Home > Press > Soft decoupling of organic molecules on metal
The illustration shows how iodine (purple) is embedded between the organic layer and the metal, thus reducing adhesion. CREDIT: IFM, University of Linköping |
Abstract:
An international team has discovered an elegant way to decouple organic nanosheets grown on metal surfaces. After iodine intercalation, measurements at the synchrotron source BESSY II of Helmholtz-Zentrum Berlin showed that a network of organic molecules behaved almost as it was free-standing. The strong influence of the metal on the network was reduced. This opens up new ways to transfer organic nanostructures from metal surfaces onto more suitable substrates for molecular electronics. The results have been published in Angewandte Chemie.
Specific organic molecules - typically on reactive metallic surfaces - can interlink via chemical bond formation into extended nanostructures. Highly stable two-dimensional molecular networks can be grown in this manner. However, these networks then adhere to the metallic support, which also strongly influences their properties. To make use of these kinds of organic networks in molecular electronics, for instance, the metal would have to be laboriously removed.
Iodine vapour reduces adhesion
Now a team headed by Markus Lackinger at the Technische Universität München and the Deutsches Museum together with partners at other universities in Germany and Sweden have discovered an elegant way to reduce the adhesion between the network and the metal. They simply exposed the networks bound to the metal to iodine vapour. "After the networks had been synthesized on a silver surface, we used iodine vapour. We hoped iodine would embed between the organic layer and the metal", explains Lackinger. To do this, they investigated a nanosheet consisting of interlinked phenyl rings (polyphenylene) on a silver surface. The iodine actually migrated beneath the interlinked phenyl rings to form an atomically thin interlayer on the metal surface. After the intercalation of the iodine, measurements at BESSY II proved that the molecular network behaved almost as if it was detached. The strong influence of the metal was reduced.
Application: New transfer techniques
These results could be advantageous for future applications. "Molecular nanosheets do not grow on any surface. For this reason, we have to develop transfer techniques. Then we could fabricate the networks on metal surfaces and subsequently transfer them over to other surfaces that are more suitable for molecular electronics. Being able to mitigate the adhesion with an iodine interlayer is possibly a first step in this direction", explains Lackinger.
####
For more information, please click here
Contacts:
Press officer: Dr. Antonia Roetger
0049-806-243-733
Copyright © Soft decoupling of organic molecules on metal
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Organic Electronics
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||