Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Drum beats from a one atom thick graphite membrane

This is an artist's impression of two coupled, vibrational modes of a graphene drum. The coupling can be tuned electrically to transfer energy between the modes and hybridize them.
CREDIT: Nanoelectronics group, TIFR Mumbai
This is an artist's impression of two coupled, vibrational modes of a graphene drum. The coupling can be tuned electrically to transfer energy between the modes and hybridize them.

CREDIT: Nanoelectronics group, TIFR Mumbai

Abstract:
Researchers from the Tata Institute of Fundamental Research, Mumbai, have demonstrated the ability to manipulate the vibrations of a drum of nanometre scale thickness - realizing the world's smallest and most versatile drum. This work has implications in improving the sensitivity of small detectors of mass - very important in detecting the mass of small molecules like viruses. This also opens the doors to probing exciting new aspects of fundamental physics.

Drum beats from a one atom thick graphite membrane

Mumbai, India | Posted on June 15th, 2016

The work, recently published in the journal Nature Nanotechnology, made use of graphene, a one-atom thick wonder material, to fabricate drums that have highly tunable mechanical frequencies and coupling between various modes. Coupling between the modes was shown to be controllable which led to the creation of new, hybrid modes and, further, allowed amplification of the vibrations.

The experiment consisted of studying the mechanical vibrational modes, or 'notes', similar to a musical drum. The small size of the drum ( diameter 0.003 mm, or 30 times smaller than the diameter of human hair) gave rise to high vibrational frequencies in the range of 100 Mega Hertz - implying that this drum vibrates 100 million times in one second. The work done by lead author, PhD student John Mathew, in the nanoelectronics group led by Prof. Mandar Deshmukh, showed that the notes of these drums could be controlled by making use of an electrical force that bends, or strains, the drum. The bending of the drum also caused different modes of the drum to interact with each other. This leads to a sloshing of energy between two notes.

"Using this interaction we now show that energy can be transferred between the modes leading to the creation of new 'notes' in the drum", says Prof. Deshmukh. The rate of energy transfer could be precisely controlled by electrical signals that modulate the coupling. The work, in addition, made use of the mechanical mode coupling to manipulate the energy lost to the environment and demonstrated amplification of the vibrational motion, equivalent to an increase in sound from the drum.

At low temperatures, the high mechanical frequencies would allow studies of energy transfer of a quantum mechanical nature between the notes. The coupling between various notes of the drum could also be engineered to work as mechanical logic circuits and lead to improvements in quantum information processing. The ability to amplify the mechanical motion will also help improve the sensitivity of sensors based on nanoscale drums.

###

The authors acknowledge funding from the Department of Atomic Energy and the Department of Science and Technology of the Government of India.

####

For more information, please click here

Contacts:
Mandar M Deshmukh

91-222-278-2829

Copyright © Tata Institute of Fundamental Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

2 Dimensional Materials

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Quantum Computing

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project