Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Research showing why hierarchy exists will aid the development of artificial intelligence

New research explains why so many biological networks, including the human brain (a network of neurons), exhibit a hierarchical structure, and will improve attempts to create artificial intelligence. The study, published in PLOS Computational Biology, demonstrates this by showing that the evolution of hierarchy -- a simple system of ranking -- in biological networks may arise because of the costs associated with network connections.
CREDIT: Steven T. Caputo, CereberalHack.com
New research explains why so many biological networks, including the human brain (a network of neurons), exhibit a hierarchical structure, and will improve attempts to create artificial intelligence. The study, published in PLOS Computational Biology, demonstrates this by showing that the evolution of hierarchy -- a simple system of ranking -- in biological networks may arise because of the costs associated with network connections.

CREDIT: Steven T. Caputo, CereberalHack.com

Abstract:
New research explains why so many biological networks, including the human brain (a network of neurons), exhibit a hierarchical structure, and will improve attempts to create artificial intelligence. The study, published in PLOS Computational Biology, demonstrates this by showing that the evolution of hierarchy - a simple system of ranking - in biological networks may arise because of the costs associated with network connections.

Research showing why hierarchy exists will aid the development of artificial intelligence

San Francisco, CA | Posted on June 13th, 2016

Like large businesses, many biological networks are hierarchically organised, such as gene, protein, neural, and metabolic networks. This means they have separate units that can each be repeatedly divided into smaller and smaller subunits. For example, the human brain has separate areas for motor control and tactile processing, and each of these areas consist of sub-regions that govern different parts of the body.

But why do so many biological networks evolve to be hierarchical? The results of this paper suggest that hierarchy evolves not because it produces more efficient networks, but instead because hierarchically wired networks have fewer connections. This is because connections in biological networks are expensive - they have to be built, housed, maintained, etc. - and there is therefore an evolutionary pressure to reduce the number of connections.

In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings may also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.

Researchers from the University of Wyoming and INRIA (France) led by Henok S. Mengistu simulated the evolution of computational brain models, known as artificial neural networks, both with and without a cost for network connections. They found that hierarchical structures emerge much more frequently when a cost for connections is present.

Author Jeff Clune says, "For over a decade we have been on a quest to understand why networks evolve to have the properties of modularity, hierarchy, and regularity. With these results, we have now uncovered evolutionary drivers for each of these key properties." Mengistu notes: "The findings not only explain why biological networks are hierarchical, they might also give an explanation for why many man-made systems such as the Internet and road systems are also hierarchical."

Author Joost Huizinga adds "The next step is to harness and combine this knowledge to evolve large-scale, structurally organized networks in the hopes of creating better artificial intelligence and increasing our understanding of the evolution of animal intelligence, including our own."

####

For more information, please click here

Contacts:
Jeff Clune

Copyright © PLOS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Artificial Intelligence

Autonomous AI assistant to build nanostructures: An interdisciplinary research group at TU Graz is working on constructing logic circuits through the targeted arrangement of individual molecules: Artificial intelligence should speed up the process enormously January 17th, 2025

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project