Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Attosecond physics: Attosecond camera for nanostructures

When laser light interacts with a nanoneedle (yellow), electromagnetic near fields are formed at its surface. A second laser pulse (purple) ejects an electron (green) from the needle, which can be used to characterize the near fields. Source: Christian Hackenberger
When laser light interacts with a nanoneedle (yellow), electromagnetic near fields are formed at its surface. A second laser pulse (purple) ejects an electron (green) from the needle, which can be used to characterize the near fields.

Source: Christian Hackenberger

Abstract:
Physicists based at Ludwig-Maximilians-Universitaet (LMU) in Munich and the Max Planck Institute for Quantum Optics have observed a nanoscale light-matter phenomenon which lasts for only attoseconds.

Attosecond physics: Attosecond camera for nanostructures

Munich, Germany | Posted on June 1st, 2016

When light strikes a metal, its electromagnetic field excites vibrations of the electrons in the metal. This interaction results in the formation of so-called near fields - electromagnetic fields that are localized close to the surface of the metal. Precisely how such near fields behave under the influence of light has now been investigated by an international team of physicists at LMU Munich and the Max Planck Institute for Quantum Optics (MPQ), in close collaboration with researchers at the Chair of Laser Physics at the Friedrich-Alexander-Universität Erlangen-Nürnberg.

The researchers focused intense infrared laser pulses onto a gold nanoneedle. These pulses are so short that they consist of only a few oscillations of the light field. When the light impinges on the nanowire it excites collective vibrations of the electrons associated with the gold atoms near the surface of the wire. These electron motions are responsible for the generation of near fields at the surface of the wire.

To study the timing of the near field's response to the light field, the physicists directed a second light pulse with an extremely short duration of just a couple of hundred attoseconds (1 as lasts for a billionth of a billionth of a second) onto the nanostructure very shortly after the first light pulse. This second flash actually detaches some electrons from the nanowire. When they reach the surface, they are accelerated by the near fields and can be detected, allowing the dynamics of the near fields to be characterized. Analysis of these electrons showed that the near fields were oscillating with a time shift of about 250 attoseconds with respect to the incident light, and that they were leading in their vibrations. In other words, the near-field vibrations reached their maximum amplitude 250 attoseconds earlier than the vibrations of the light field.

"Fields and surface waves generated in nanostructures are of central importance for the development of opto-electronics. With the imaging technique we have demonstrated here, they can now be sharply resolved," explains Professor Matthias Kling, the leader of the Ultrafast Nanophotonics group in the Department of Physics at LMU.

The experiments pave the way for more complex studies of light-matter interactions in metals that are of interest for nano-optics and the light-driven electronics of the future. Such electronics would work at the frequencies of light. Optical fields oscillate at rates of a million billion times per second, i.e. with petahertz frequencies - about 100,000 times faster than the clock frequencies attainable in conventional electronic devices.

####

For more information, please click here

Contacts:
Luise Dirscherl

0049-892-180-3423

Copyright © Ludwig-Maximilians-Universität München (LMU)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Optical computing/Photonic computing

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project