Home > Press > Attosecond physics: Attosecond camera for nanostructures
![]() |
When laser light interacts with a nanoneedle (yellow), electromagnetic near fields are formed at its surface. A second laser pulse (purple) ejects an electron (green) from the needle, which can be used to characterize the near fields. Source: Christian Hackenberger |
Abstract:
Physicists based at Ludwig-Maximilians-Universitaet (LMU) in Munich and the Max Planck Institute for Quantum Optics have observed a nanoscale light-matter phenomenon which lasts for only attoseconds.
When light strikes a metal, its electromagnetic field excites vibrations of the electrons in the metal. This interaction results in the formation of so-called near fields - electromagnetic fields that are localized close to the surface of the metal. Precisely how such near fields behave under the influence of light has now been investigated by an international team of physicists at LMU Munich and the Max Planck Institute for Quantum Optics (MPQ), in close collaboration with researchers at the Chair of Laser Physics at the Friedrich-Alexander-Universität Erlangen-Nürnberg.
The researchers focused intense infrared laser pulses onto a gold nanoneedle. These pulses are so short that they consist of only a few oscillations of the light field. When the light impinges on the nanowire it excites collective vibrations of the electrons associated with the gold atoms near the surface of the wire. These electron motions are responsible for the generation of near fields at the surface of the wire.
To study the timing of the near field's response to the light field, the physicists directed a second light pulse with an extremely short duration of just a couple of hundred attoseconds (1 as lasts for a billionth of a billionth of a second) onto the nanostructure very shortly after the first light pulse. This second flash actually detaches some electrons from the nanowire. When they reach the surface, they are accelerated by the near fields and can be detected, allowing the dynamics of the near fields to be characterized. Analysis of these electrons showed that the near fields were oscillating with a time shift of about 250 attoseconds with respect to the incident light, and that they were leading in their vibrations. In other words, the near-field vibrations reached their maximum amplitude 250 attoseconds earlier than the vibrations of the light field.
"Fields and surface waves generated in nanostructures are of central importance for the development of opto-electronics. With the imaging technique we have demonstrated here, they can now be sharply resolved," explains Professor Matthias Kling, the leader of the Ultrafast Nanophotonics group in the Department of Physics at LMU.
The experiments pave the way for more complex studies of light-matter interactions in metals that are of interest for nano-optics and the light-driven electronics of the future. Such electronics would work at the frequencies of light. Optical fields oscillate at rates of a million billion times per second, i.e. with petahertz frequencies - about 100,000 times faster than the clock frequencies attainable in conventional electronic devices.
####
For more information, please click here
Contacts:
Luise Dirscherl
0049-892-180-3423
Copyright © Ludwig-Maximilians-Universität München (LMU)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Possible Futures
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Chip Technology
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Optical computing/Photonic computing
Programmable electron-induced color router array May 14th, 2025
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Tools
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Photonics/Optics/Lasers
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Programmable electron-induced color router array May 14th, 2025
Research partnerships
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |