Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The next generation of carbon monoxide nanosensors

This is an adaptation of a scanning electron microscopy image of copper oxide nanowires bridging the gap between neighbouring copper microstructures
CREDIT: OIST
This is an adaptation of a scanning electron microscopy image of copper oxide nanowires bridging the gap between neighbouring copper microstructures

CREDIT: OIST

Abstract:
The detection of carbon monoxide (CO) in the air is a vital issue, as CO is a poisonous gas and an environmental pollutant. CO typically derives from the incomplete combustion of carbon-based fuels, such as cooking gas and gasoline; it has no odour, taste, or colour and hence it is difficult to detect. Scientists have been investigating sensors that can determine CO concentration, and a team from the Okinawa Institute of Science and Technology Graduate University (OIST), in tandem with the University of Toulouse, has found an innovative method to build such sensors.

The next generation of carbon monoxide nanosensors

Okinawa, Japan | Posted on May 26th, 2016

As a tool for CO detection, scientists use extremely small wires: copper oxide nanowires. Copper oxide nanowires chemically react with CO, creating an electrical signal that can be used to quantify CO concentration. These nanowires are so thin that it is possible to fit more than 1.000 of them in the average thickness of a human hair.

Two issues have hampered the use of nanowires. "The first problem is the integration of nanowires into devices that are big enough to be handled and that can also be easily mass produced," said Prof Mukhles Sowwan, director of the Nanoparticles by Design Unit at OIST. "The second issue is the ability to control the number and position of nanowires in such devices." Both these difficulties might have been solved by Dr Stephan Steinhauer, postdoctoral scholar at OIST, together with Prof Sowwan, and researchers from the University of Toulouse. They recently published their research in the journal ACS Sensors.

"To create copper oxide nanowires, you need to heat neighbouring copper microstructures. Starting from the microstructures, the nanowires grow and bridge the gap between the microstructures, forming an electrical connection between them," Dr Steinhauer explained. "We integrated copper microstructures on a micro-hotplate, developed by the University of Toulouse. A micro-hotplate is a thin membrane that can heat up to several hundred Celsius degrees, but with very low power consumption." Thanks to the micro-hotplate, researchers have a high degree of control over the quantity and position of the nanowires. Also, the micro-hotplate provides scientists with data on the electrical signal that goes through the nanowires.

The final result is an exceptionally sensitive device, capable of detecting very low concentrations of CO. "Potentially, miniaturized CO sensors that integrate copper oxide nanowires with micro-hotplates are the first step towards the next generation of gas sensors," Prof Sowwan commented. "In contrast to other techniques, our approach is cost effective and suitable for mass production."

This new method could also help scientists in better understanding the sensor lifetime. The performance of a sensor decreases overtime, and this is a major issue in gas sensing. Data obtained with this method could help scientists in understanding the mechanisms behind such phenomenon, providing them with information that starts at the very beginning of the sensor lifetime. Traditionally, researchers first grow the nanowires, then connect the nanowires to a device, and finally start measuring the CO concentration. "Our method allows to grow the nanowires in a controlled atmosphere, where you can immediately perform gas sensing measurements," Dr Steinhauer noted. "Basically, you stop growing and start measuring, all in the same location."

####

For more information, please click here

Contacts:
Kaoru Natori

81-989-662-389

Copyright © Okinawa Institute of Science and Technology Graduate University (OIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Environment

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

New gel could boost coral reef restoration: The substance, applied to surfaces as a coating, improved coral larvae settlement by up to 20 times in experiments compared to untreated surfaces May 16th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project