Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies

Silver nanowires are an ideal material for current and future flexible touch-screen technologies
Photo credit: Getty Images
Silver nanowires are an ideal material for current and future flexible touch-screen technologies

Photo credit: Getty Images

Abstract:
•Silver nanowires are an ideal material for current and future flexible touch-screen technologies
•Traditional touchscreen material is facing supply shortfall, as well as being unfit for flexible devices
•Material can be manufactured easily, using less energy than current material

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies

Guildford, UK | Posted on May 13th, 2016

Research published in the journals Materials Today Communications and Scientific Reports has described how silver nanowires are proving to be the ideal material for flexible, touch-screen technologies while also exploring how the material can be manipulated to tune its performance for other applications. Currently, touch screen devices mainly rely on electrodes made from indium tin oxide (ITO), a material that is expensive to source, expensive to process and very brittle.

A team from the University of Surrey, led by Professor Alan Dalton and in collaboration with M-SOLV Ltd, a touch-sensor manufacturer based in Oxford, looked to alternative materials to overcome the challenges of ITO, which is suffering from supply uncertainty. Alternative materials investigated as ITO replacements have included graphene, carbon nanotubes and random metal nanowire films. This study showed how silver nanowire films have emerged as the strongest competitor, due to transmittances and conductivities which can match and readily exceed those of ITO. This is a material that consists of wires which are over a thousand times thinner than a human hair, that form an interconnected conductive network.

Matthew Large, the first author on the research published in Scientific Reports described the importance of these latest results. "Our research hasn't just identified silver nanowires as a viable replacement touchscreen material, but has gone one step further in showing how a process called 'ultrasonication' can allow us to tailor performance capabilities. By applying high frequency sound energy to the material we can manipulate how long the nanosized 'rods' of silver are. This allows us to tune how transparent or how conductive our films are, which is vital for optimising these materials for future technologies like flexible solar cells and roll-able electronic displays."

In a paper published last month in Materials Today Communications, the same team, showed how silver nanowires can be processed using the same laser ablation technique commonly used to manufacture ITO devices. Using this technique, the team produced a fully operating five inch multi-touch sensor, identical to those typically used in smartphone technology. They found it performed comparably to one based on ITO but used significantly less energy to produce.

"Not only does this flexible material perform very well, we have shown that it is a viable alternative to ITO in practical devices," concluded Professor Dalton. "The fact we are able to produce devices using similar methods as currently in use, but in a less energy-intensive way is an exciting step towards flexible gadgets that do not just open the door for new applications, but do so in a much greener way."

Maria Cann, a technologist from M-SOLV and first author on the Materials Today Communications paper added ""We are seeing a lot of interest from our customers in silver nanowire films as an ITO replacement in devices. This work is a really important step in establishing exactly which sensor designs can make good nanowire products. The fact that the nanowire films are processed by the same laser techniques as ITO makes the transition from ITO to nanowires really straightforward. It won't be long before we are all using nanowires in our electronic devices. "

The team, now based at the University of Sussex is now looking to develop the scalability of the process to make it more industrially viable. One limiting factor is the current cost of silver nanowires. Funded by Innovate UK and EPSRC, the team are collaborating with M-SOLV and a graphene supplier Thomas Swan to use a nanowire and graphene combination in the electrodes to markedly reduce the cost.

####

For more information, please click here

Contacts:
Amy Sutton

148-368-6141

Copyright © University of Surrey

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Flexible Electronics

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project