Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls

Abstract:
Quantum information science and technology has emerged as a new paradigm for dramatically faster computation and secure communication in the 21st century. At the heart of any quantum system is the most basic building block, the quantum bit or qbit, which carries the quantum information that can be transferred and processed (this is the quantum analogue of the bit used in current information systems). The most promising carrier qbit for ultimately fast, long distance quantum information transfer is the photon, the quantum unit of light.

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls

Jerusalem, Israel | Posted on May 3rd, 2016

The challenge facing scientists is to produce artificial sources of photons for various quantum information tasks. One of the biggest challenges is the development of efficient, scalable photon sources that can be mounted on a chip and operate at room temperature. Most sources used in labs today have to be very cold (at the temperature of liquid Helium, about -270C), which requires large and expensive refrigerators. Many sources also emit photons in undefined directions, making efficient collection a hard problem.

Now, a team of scientists from the Hebrew University of Jerusalem has demonstrated an efficient and compact single photon source that can operate on a chip at ambient temperatures. Using tiny nanocrystals made of semiconducting materials, the scientists developed a method in which a single nanocrystal can be accurately positioned on top of a specially designed and carefully fabricated nano-antenna.

In the same way large antennas on rooftops direct emission of classical radio waves for cellular and satellite transmissions, the nano-antenna efficiently directed the single photons emitted from the nanocrystals into a well-defined direction in space. This combined nanocrystals-nanoantenna device was able to produce a highly directional stream of single photons all flying to the same direction with a record low divergence angle. These photons were then collected with a very simple optical setup, and sent to be detected and analyzed using single photon detectors.

The team demonstrated that this hybrid device enhances the collection efficiency of single photons by more than a factor of 10 compared to a single nanocrystal without the antenna, without the need for complex and bulky optical collection systems used in many other experiments. Experimental results show that almost 40% of the photons are easily collected with a very simple optical apparatus, and over 20% of the photons are emitted into a very low numerical aperture, a 20-fold improvement over a freestanding quantum dot, and with a probability of more than 70% for a single photon emission. The single photon purity is limited only by emission from the metal, an obstacle that can be bypassed with careful design and fabrication.

The antennas were fabricated using simple metallic and dielectric layers using methods that are compatible with current industrial fabrication technologies, and many such devices can be fabricated densely on one small chip. The team is now working on a new generation of improved devices that will allow deterministic production of single photons straight from the chip into optical fibers, without any additional optical components, with a near unity efficiency.

"This research paves a promising route for a high purity, high efficiency, on-chip single photon source operating at room temperature, a concept that can be extended to many types of quantum emitters. A highly directional single photon source could lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future quantum technological applications", said Prof. Ronen Rapaport, of the Racah Institute of Physics, The Department of Applied Physics, and the Center of Nanoscience and Nanotechnology at the Hebrew University of Jerusalem.

####

About Hebrew University of Jerusalem
The Hebrew University of Jerusalem is Israel's leading academic and research institution, producing one-third of all civilian research in Israel. For more information, visit new.huji.ac.il/en.

For more information, please click here

Contacts:
Dov Smith

972-258-82844

Copyright © Hebrew University of Jerusalem

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Quantum Physics

Energy transmission in quantum field theory requires information September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Quantum Computing

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Optical computing/Photonic computing

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

Quantum nanoscience

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project