Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Adding some salt to the recipe for energy storage materials: Researchers use common table salt as growth template

Abstract:
The secret to making the best energy storage materials is growing them with as much surface area as possible. Like baking, it requires just the right mixture of ingredients prepared in a specific amount and order at just the right temperature to produce a thin sheet of material with the perfect chemical consistency to be useful for storing energy. A team of researchers from Drexel University, Huazhong University of Science and Technology (HUST) and Tsinghua University recently discovered a way to improve the recipe and make the resulting materials bigger and better and soaking up energy -- the secret? Just add salt.

Adding some salt to the recipe for energy storage materials: Researchers use common table salt as growth template

Philadelphia, PA | Posted on April 22nd, 2016

The team's findings, which were recently published in the journal Nature Communications, show that using salt crystals as a template to grow thin sheets of conductive metal oxides make the materials turn out larger and more chemically pure -- which makes them better suited for gathering ions and storing energy.

"The challenge of producing a metal oxide that reaches theoretical performance values is that the methods for making it inherently limit its size and often foul its chemical purity, which makes it fall short of predicted energy storage performance," said Jun Zhou, a professor at HUST's Wuhan National Laboratory for Optoelectronics and an author of the research. Our research reveals a way to grow stable oxide sheets with less fouling that are on the order of several hundreds of times larger than the ones that are currently being fabricated."

In an energy storage device -- a battery or a capacitor, for example -- energy is contained in the chemical transfer of ions from an electrolyte solution to thin layers of conductive materials. As these devices evolve they're becoming smaller and capable of holding an electric charge for longer periods of time without needing a recharge. The reason for their improvement is that researchers are fabricating materials that are better equipped, structurally and chemically, for collecting and disbursing ions.

In theory, the best materials for the job should be thin sheets of metal oxides, because their chemical structure and high surface area makes it easy for ions to attach -- which is how energy storage occurs. But the metal oxide sheets that have been fabricated in labs thus far have fallen well short of their theoretical capabilities.

According to Zhou, Tang and the team from HUST, the problem lies in the process of making the nanosheets -- which involves either a deposition from gas or a chemical etching -- often leaves trace chemical residues that contaminate the material and prevent ions from bonding to it. In addition, the materials made in this way are often just a few square micrometers in size.

Using salt crystals as a substrate for growing the crystals lets them spread out and form a larger sheet of oxide material. Think of it like making a waffle by dripping batter into a pan versus pouring it into a big waffle iron; the key to getting a big, sturdy product is getting the solution -- be it batter, or chemical compound -- to spread evenly over the template and stabilize in a uniform way.

"This method of synthesis, called 'templating' -- where we use a sacrificial material as a substrate for growing a crystal -- is used to create a certain shape or structure," said Yury Gogotsi, PhD, University and Trustee Chair professor in Drexel's College of Engineering and head of the A.J. Drexel Nanomaterials Institute, who was an author of the paper. "The trick in this work is that the crystal structure of salt must match the crystal structure of the oxide, otherwise it will form an amorphous film of oxide rather than a thing, strong and stable nanocrystal. This is the key finding of our research -- it means that different salts must be used to produce different oxides."

Researchers have used a variety of chemicals, compounds, polymers and objects as growth templates for nanomaterials. But this discovery shows the importance of matching a template to the structure of the material being grown. Salt crystals turn out to be the perfect substrate for growing oxide sheets of magnesium, molybdenum and tungsten.

The precursor solution coats the sides of the salt crystals as the oxides begin to form. After they've solidified, the salt is dissolved in a wash, leaving nanometer-thin two-dimensional sheets that formed on the sides of the salt crystal -- and little trace of any contaminants that might hinder their energy storage performance. By making oxide nanosheets in this way, the only factors that limit their growth is the size of the salt crystal and the amount of precursor solution used.

"Lateral growth of the 2D oxides was guided by salt crystal geometry and promoted by lattice matching and the thickness was restrained by the raw material supply. The dimensions of the salt crystals are tens of micrometers and guide the growth of the 2D oxide to a similar size," the researchers write in the paper. "On the basis of the naturally non-layered crystal structures of these oxides, the suitability of salt-assisted templating as a general method for synthesis of 2D oxides has been convincingly demonstrated."

As predicted, the larger size of the oxide sheets also equated to a greater ability to collect and disburse ions from an electrolyte solution -- the ultimate test for its potential to be used in energy storage devices. Results reported in the paper suggest that use of these materials may help in creating an aluminum-ion battery that could store more charge than the best lithium-ion batteries found in laptops and mobile devices today.

Gogotsi, along with his students in the Department of Materials Science and Engineering, has been collaborating with Huazhong University of Science and Technology since 2012 to explore a wide variety of materials for energy storage application. The lead author of the Nature Communications article, Xu Xiao, and co-author Tiangi Li, both Zhou's doctoral students, came to Drexel as exchange students to learn about the University's supercapacitor research. Those visits started a collaboration, which was supported by Gogotsi's annual trips to HUST. While the partnership has already yielded five joint publications, Gogotsi speculates that this work is only beginning.

"The most significant result of this work thus far is that we've demonstrated the ability to generate high-quality 2D oxides with various compositions," Gogotsi said. "I can certainly see expanding this approach to other oxides that may offer attractive properties for electrical energy storage, water desalination membranes, photocatalysis and other applications."

####

For more information, please click here

Contacts:
Britt Faulstick

215-895-2617

Copyright © Drexel University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

2 Dimensional Materials

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project