Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Innovative Exeter research pioneers nanotechnology for gas sensing

Hannah Barnard left, Katya Zossimova centre and Professor Geoff Nash right.

Credit: University of Exeter
Hannah Barnard left, Katya Zossimova centre and Professor Geoff Nash right.

Credit: University of Exeter

Abstract:
A team of scientists from the University of Exeter have created a new type of device that could be used to develop cost-effective gas sensors.

Innovative Exeter research pioneers nanotechnology for gas sensing

Exeter, UK | Posted on April 15th, 2016

The pioneering team, which includes two second year Exeter undergraduates, have created a new type of device that emits light in the infrared part of the spectrum. Many important gases strongly absorb infrared light and this characteristic absorption can be used as a way of sensing them.

However, most existing infrared gas sensors use conventional "light-bulb" incandescent sources of infrared light, which have a number of considerable shortcomings including limited lifetimes due to the fragility of the filament. The new sensors could be used for a diverse range of applications including the sensing of atmospheric pollutants such as nitrogen dioxide, which is emitted from car exhausts and which can have a significant effect on public health.

The Exeter team used a sandwich of different 2D materials, which are only a few atoms thick, to create a device that is similar to a nanoscale light-bulb, but where the filament is extremely hard to break. In addition, the team believe that these devices could ultimately be more cost effective and sustainable to manufacture than semiconductor based light emitting diodes emitting at these long wavelengths.

The research, which is led by Professor Geoff Nash, is published in the highly-respected scientific journal Applied Physics Letters.

The team included undergraduate students Hannah Barnard and Katya Zossimova, who began working as part of Professor Nash's group last summer whilst in their first year.

Professor Nash, Professor of Engineering Physics and Director of Natural Sciences, from the University of Exeter, said: "Previous devices we've made really only operated in vacuum and would break very quickly when exposed to air. By encapsulating the nanoscale filament in a protective coating, we have shown that these devices can operate in air for well over 1000 hours, paving the way for the development of practical infrared sources that could be used in sensor applications."

Commenting on the makeup of his research team, he went on to add that "It's a privilege to work alongside our some of our fantastic students, who have brought energy, enthusiasm and a different perspective to our research. Hannah and Katya, and other undergraduates before, have made a real impact to the work of my group."

Katya, who is studying Physics, said: "It's been really exciting to be part of the research team, everyone has been really welcoming and I have learned a lot from the experience. I feel that this opportunity has given me the confidence to consider postgraduate studies in Physics."

Hannah, who is studying Natural Sciences, said that the experience gave her "invaluable insight into being a research scientist within the University." She added: "Since taking part in the internship I have achieved things I never even thought were possible and pushed all of my personal boundaries. I have loved being able to apply what I learn in the labs to my taught modules and vice versa."

Natural Sciences at Exeter is an innovative flagship programme designed to explore the scientific concepts needed to explain the natural world, from the nanoscale to the complex systems of the Earth's climate and our solar system.

Research-inspired, inquiry-led learning is the cornerstone of the University's Education Strategy and undergraduates are engaged in the world-leading research at the University in many different ways.

Professor Tim Quine, Deputy Vice-Chancellor (Education), commented that "the synergies between education and research are vital in the approach the University takes to the discovery and dissemination of knowledge. The work of Hannah and Katya, supported by Professor Nash, is a perfect example of the great relationships between our students and academics".

###

The research was undertaken as part of an UK Engineering and Physical Sciences Research Council Fellowship, held by Professor Nash, in Frontier Manufacturing.

####

For more information, please click here

Contacts:
Duncan Sandes

44-013-927-22062

Copyright © University of Exeter

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project