Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Cooling chips with the flip of a switch: Researchers at Penn State have created a dielectric material that maintains a cooled state after an electrical field pulse

A dielectric material, when subject to an electric pulse, will absorb heat from or cool the surrounding.
CREDIT: X. Qian and Q.M.Zhang/PSU
A dielectric material, when subject to an electric pulse, will absorb heat from or cool the surrounding.

CREDIT: X. Qian and Q.M.Zhang/PSU

Abstract:
Turn on an electric field, and a standard electrocaloric material will eject heat to its surroundings as its internal dipoles reorder themselves. Do the same thing, and a negative electrocaloric material will absorb heat, cooling the environment, thanks to the blend of ferroelectric polymers that make up each. While these materials have been investigated as a method of on-demand microclimate control for quite some time, there's a catch - the external field needs to remain active, which is energy-consuming and ends up heating the material. Recently, however, researchers at Pennsylvania State University have developed a unique blend of ferroelectric polymers which can hold absorbed heat even after the external field has been switched off - a system which could be adapted for a variety of small-scale systems.

Cooling chips with the flip of a switch: Researchers at Penn State have created a dielectric material that maintains a cooled state after an electrical field pulse

Washington, DC | Posted on April 6th, 2016

In a typical electrocaloric material, heating and cooling are only generated when the field is changing in response to a full electric pulse. Here, the amount of heating is slightly greater than the amount of cooling, with the difference depending on the material's efficiency.

The researcher's anomalous electrocaloric material flips this, generating cooling when the field is turned on, but no subsequent heating when the field is turned off, other than the miniscule amount of heating generated in the dielectric material by the electric field.

"The advantage of the electrocaloric material is its very high efficiency, compared with other solid state coolers, such as the thermoelectric cooler," said Xiaoshi Qian, a post-doctoral scholar and primary investigator on project. According to Qian this can be attached to a chip or a biological system in need of on-demand cooling.

Qian and his colleagues, including Qiming Zhang, also a professor at Penn State, describe their novel hybrid dielectric material this week in Applied Physics Letters, from AIP Publishing.

This allows the materials to either add or remove heat from a system through an internal reordering of dipoles - the separation of positive and negative charges.

The researchers' electrocaloric material consists of a hybrid normal ferroelectric polyvinylidene fluoride-trifluoroethylene copolymer and a relaxor ferroelectric chlorofluoroethylene terpolymer.

According to Qian, the bulkier third monomer CFE in the terpolymer introduces defects in its polymer chain, causing it to exhibit dipolar randomness rather than the ferroelectric ordering shown in the copolymer. When these form a finely-tuned blend, the resulting hybrid can be poled into one dipolar direction with an electric pulse, owing to the formation of strong macroscopic ferroelectric domains. Then, when subjected to a second, smaller pulse, the material becomes depoled, or randomly poled, and maintains this state.

This allows their ferroelectric material to not only maintain a large cooling effect when a voltage is applied, but after it has been removed.

Their experimental cycle consists of two electric pulses which operate in bipolar directions. The first pulse orders the hybrid's poles into a macroscopic polar-state, followed by a second de-poling pulse which transitions the material to a dipole random state. This yields a large cooling effect when the polymer blends display a large entropy increase due to the disordering.

"We would like to improve the electrocaloric materials in the future so that the cooling generated upon an electric pulse in the EC material can be much larger," Qian said. "This study is the first step toward that direction."

####

About American Institute of Physics
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. apl.aip.org

For more information, please click here

Contacts:
AIP Media Line

301-209-3090

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Anomalous negative electrocaloric effect in a relaxor/normal ferroelectric polymer blend with controlled nano- and meso-dipolar couplings," is authored Xiaoshi Qian, Tiannan Yang, Tian Zhang, Long-Qing Chen and Q. M. Zhang. It will appear in the journal Applied Physics Letters April 5, 2016 (DOI: 10.1063/1.4944776). After that date, it can be accessed at:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project