Home > Press > Correction: Solar fuels: Protective layer for the 'artificial leaf'
![]() |
The illustration shows the structure of the sample: n-doped silicon layer (black), a thin silicon oxide layer (gray), an intermediate layer (yellow) and finally the protective layer Image: M. Lublow/HZB |
Abstract:
The "artificial leaf" consists in principle of a solar cell that is combined with further functional layers. These act as electrodes and additionally are coated with catalysts. If the complex system of materials is submerged in water and illuminated, it can decompose water molecules. This causes hydrogen to be generated that stores solar energy in chemical form. However, there are still several problems with the current state of technology. For one thing, sufficient light must reach the solar cell in order to create the voltage for water splitting despite the additional layers of material. Moreover, the semiconductor materials that the solar cells are generally made of are unable to withstand the typical acidic conditions for very long. For this reason, the artificial leaf needs a stable protective layer that must be simultaneously transparent and conductive.
Catalyst used twice
The team worked with samples of silicon, an n-doped semiconductor material that acts as a simple solar cell to produce a voltage when illuminated. Materials scientist Anahita Azarpira, a doctoral student in Dr. Thomas Schedel-Niedrig's group, prepared these samples in such a way that carbon-hydrogen chains on the surface of the silicon were formed. "As a next step, I deposited nanoparticles of ruthenium dioxide, a catalyst", Azarpira explains. This resulted in formation of a conductive and stable polymeric layer only three to four nanometres thick. The reactions in the electrochemical prototype cell were extremely complicated and could only be understood now at HZB.
The ruthenium dioxide particles in this new process were being used twice for the first time. In the first place, they provide for the development of an effective organic protective layer. This enables the process for producing protective layers, normally very complicated, to be greatly simplified. Only then does the catalyst do its "normal job" of accelerating the partitioning of water into oxygen and hydrogen.
Organic protection layer combines excellent stability with high current densities
The silicon electrode protected with this layer achieves current densities in excess of 15 mA/cm2. This indicates that the protection layer shows good electronic conductivity, which is by no means trivial for an organic layer. In addition, the researchers observed no degradation of the cell, the yield remained constant over the entire 24-hour measurement period. It is remarkable that an entirely different material has been favoured as an organic protective layer: graphene. This two-dimensional material has been the subject of much discussion, yet up to now could only be employed for electrochemical processes with limited success, while the protective layer developed at HZB works quite well. "Because the novel material could lend itself for the deposition process as well as for other applications, we are trying to acquire international protected property rights", says Thomas Schedel-Niedrig, head of the group.
####
For more information, please click here
Contacts:
Dr. Michael Lublow
49-308-062-42753
Copyright © Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Graphene/ Graphite
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Patents/IP/Tech Transfer/Licensing
Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023
Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021
Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |