Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Could bread mold build a better rechargeable battery?

This is an artistic rendering of a carbonized fungal biomass-manganese oxide mineral composite (MycMnOx/C) can be applied as a novel electrochemical material in energy storage devices
CREDIT: Qianwei Li and Geoffrey Michael Gadd
This is an artistic rendering of a carbonized fungal biomass-manganese oxide mineral composite (MycMnOx/C) can be applied as a novel electrochemical material in energy storage devices

CREDIT: Qianwei Li and Geoffrey Michael Gadd

Abstract:
You probably don't think much of fungi, and especially those that turn bread moldy, but researchers reporting in the Cell Press journal Current Biology on March 17, 2016 have evidence that might just change your mind. Their findings suggest that a red bread mold could be the key to producing more sustainable electrochemical materials for use in rechargeable batteries.

Could bread mold build a better rechargeable battery?

Maryland Heights, MO | Posted on March 18th, 2016

The researchers show for the first time that the fungus Neurospora crassa can transform manganese into a mineral composite with favorable electrochemical properties.

"We have made electrochemically active materials using a fungal manganese biomineralization process," says Geoffrey Gadd of the University of Dundee in Scotland. "The electrochemical properties of the carbonized fungal biomass-mineral composite were tested in a supercapacitor and a lithium-ion battery, and it [the composite] was found to have excellent electrochemical properties. This system therefore suggests a novel biotechnological method for the preparation of sustainable electrochemical materials."

Gadd and his colleagues have long studied the ability of fungi to transform metals and minerals in useful and surprising ways. In earlier studies, the researchers showed that fungi could stabilize toxic lead and uranium, for example. That led the researchers to wonder whether fungi could offer a useful alternative strategy for the preparation of novel electrochemical materials too.

"We had the idea that the decomposition of such biomineralized carbonates into oxides might provide a novel source of metal oxides that have significant electrochemical properties," Gadd says.

In fact, there have been many efforts to improve lithium-ion battery or supercapacitor performance using alternative electrode materials such as carbon nanotubes and other manganese oxides. But few had considered a role for fungi in the manufacturing process.

In the new study, Gadd and his colleagues incubated N. crassa in media amended with urea and manganese chloride (MnCl2) and watched what happened. The researchers found that the long branching fungal filaments (or hyphae) became biomineralized and/or enveloped by minerals in various formations. After heat treatment, they were left with a mixture of carbonized biomass and manganese oxides. Further study of those structures show that they have ideal electrochemical properties for use in supercapacitors or lithium-ion batteries.

"We were surprised that the prepared biomass-Mn oxide composite performed so well," Gadd says. In comparison to other reported manganese oxides in lithium-ion batteries, the carbonized fungal biomass-mineral composite "showed an excellent cycling stability and more than 90% capacity was retained after 200 cycles," he says.

The new study is the first to demonstrate the synthesis of active electrode materials using a fungal biomineralization process, illustrating the great potential of these fungal processes as a source of useful biomaterials.

Gadd says they'll continue to explore the use of fungi in producing various potentially useful metal carbonates. They're also interested in investigating such processes for the biorecovery of valuable or scarce metal elements in other chemical forms.

###

The authors acknowledge financial support from the China Scholarship Council and the 1000 Talents Plan with the Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences.

####

For more information, please click here

Contacts:
Joseph Caputo

617-397-2802

Copyright © Cell Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Current Biology, Li and Gadd et al.: "Fungal Biomineralization of Manganese as a Novel Source of Electrochemical Materials":

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project