Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Warming up optoelectronic research: A team of US/UK physicists has created a new material that can control excitons -- bound pairs of electrons and electron holes -- at room temperature, opening a path toward new optoelectronic devices for commercial applications

Erica Calman and Chelsey Dorow align optics required to collect measurements from a molybdenum disulfide sample.
CREDIT: Calman
Erica Calman and Chelsey Dorow align optics required to collect measurements from a molybdenum disulfide sample.

CREDIT: Calman

Abstract:
A team of physicists from the University of California, San Diego and The University of Manchester is creating tailor-made materials for cutting-edge research and perhaps a new generation of optoelectronic devices. The materials make it easier for the researchers to manipulate excitons, which are pairs of an electron and an electron hole bound to each other by an electrostatic force.

Warming up optoelectronic research: A team of US/UK physicists has created a new material that can control excitons -- bound pairs of electrons and electron holes -- at room temperature, opening a path toward new optoelectronic devices for commercial applications

Washington, DC | Posted on March 10th, 2016

Excitons are created when a laser is shone onto a semiconductor device. They can transport energy without transporting net electric charge. Inside the device the excitons interact with each other and their surroundings, and then convert back into light. This makes them attractive for new technology. Inside the device the excitons interact with each other and their surroundings, and then convert back into light that can be detected by extremely sensitive charge-coupled device (CCD) cameras.

Most of the team's previous work involved structures based on gallium arsenide (GaAs), which is a material commonly used throughout the semiconductor industry. Unfortunately, the devices they've developed come with a fundamental limitation: They require cryogenic temperatures (below 100 K) -- ruling out any commercial applications.

So the team made a radical material change to bring their excitonic devices up to room temperature. They report their results in Applied Physics Letters, from AIP Publishing.

"Our previous structures were built from thin layers of GaAs deposited on top of a substrate with a particular layer thickness and sequence to ensure the specific properties we wanted," said Erica Calman, lead author and a graduate student in the Department of Physics, University of California, San Diego.

To make the new devices the physicists turned to new structures built from a specially designed set of ultrathin layers of materials -- molybdenum disulfide (MoS2) and hexagonal boron nitride (hBN) -- each a single atom thick.

These structures are produced via the famous "Scotch tape" or mechanical exfoliation method developed by the group of Andre Geim, a physicist awarded a Nobel Prize in physics in 2010 for his groundbreaking work regarding the two-dimensional material graphene.

"Our specially designed structures help keep excitons bound more tightly together so that they can survive at room temperature -- where GaAs excitons are torn apart," explains Calman.

Impressively, excitons can form a special quantum state known as a Bose-Einstein condensate. This state occurs within superfluids and enables currents of particles without losses. The team discovered a similar exciton phenomenon at cold temperatures with GaAs materials.

"The results of our work suggest that we may be able to make new structures work all the way up to room temperature," said Calman. "We set out to prove that we could control the emission of neutral and charged excitations by voltage, temperature, and laser power ... and demonstrated just that."

####

About American Institute of Physics
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: apl.aip.org

For more information, please click here

Contacts:
AIP Media Line

301-209-3090

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Control of excitons in multi-layer van der Waals heterostructures," is authored by E. V. Calman, C. J. Dorow, M. M. Fogler, L. V. Butov, S. Hu, A. Mishchenko and A. K. Geim. It was published in the journal Applied Physics Letters on March 7, 2016 (DOI: 10/10.1063/1.49432) and can be accessed at:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Optical computing/Photonic computing

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project