Home > Press > UTA researchers devise more efficient materials for solar fuel cells
Dr. Krishnan Rajeshwar, is UTA distinguished professor of chemistry and biochemistry and co-founder of the University's Center of Renewable Energy, Science and Technology. CREDIT: UTA |
Abstract:
University of Texas at Arlington chemists have developed new high-performing materials for cells that harness sunlight to split carbon dioxide and water into useable fuels like methanol and hydrogen gas. These "green fuels" can be used to power cars, home appliances or even to store energy in batteries.
"Technologies that simultaneously permit us to remove greenhouse gases like carbon dioxide while harnessing and storing the energy of sunlight as fuel are at the forefront of current research," said Krishnan Rajeshwar, UTA distinguished professor of chemistry and biochemistry and co-founder of the University's Center of Renewable Energy, Science and Technology.
"Our new material could improve the safety, efficiency and cost-effectiveness of solar fuel generation, which is not yet economically viable," he added.
The new hybrid platform uses ultra-long carbon nanotube networks with a homogeneous coating of copper oxide nanocrystals. It demonstrates both the high electrical conductivity of carbon nanotubes and the photocathode qualities of copper oxide, efficiently converting light into the photocurrents needed for the photoelectrochemical reduction process.
Morteza Khaledi, dean of the UTA College of Science, said Rajeshwar's work is representative of the University's commitment to addressing critical issues with global environmental impact under the Strategic Plan 2020.
"Dr. Rajeshwar's ongoing, global leadership in research focused on solar fuel generation forms part of UTA's increasing focus on renewable and sustainable energy," Khaledi said. "Creating inexpensive ways to generate fuel from an unwanted gas like carbon dioxide would be an enormous step forward for us all."
For the solar fuel cells project, Rajeshwar worked with Csaba Janáky, an assistant chemistry professor at the University of Szeged in Hungary and Janáky's master's student Egon Kecsenovity. Janaky served as a UTA Marie Curie Fellow from 2011 to 2013.
The findings are the subject of a Feb. 15 minireview, "Electrodeposition of Inorganic Oxide/Nanocarbon Composites: Opportunities and Challenges," published in ChemElectroChem Europe and a companion article in the Journal of Materials Chemistry A on "Decoration of ultra long carbon nanotubes with Cu2O nanocrystals: a hybrid platform for photoelectrochemical CO2 reduction."
"The performance of our hybrid has proved far superior to the properties of the individual materials," Rajeshwar said. "These new hybrid films demonstrate five-fold higher electrical conductivity compared to their copper oxide counterparts, and generate a three-fold increase in the photocurrents needed for the reduction process."
The new material also demonstrates much greater stability during long-term photoelectrolysis than pure copper oxide, which corrodes over time, forming metallic copper.
The research involved developing a multi-step electrodeposition process to ensure that a homogeneous coating of copper oxide nanoparticles were deposited on the carbon nanotube networks. By varying the thickness of the carbon nanotube film and the amount of electrodeposited copper oxide, the researchers were able to optimize the efficiency of this new hybrid material.
Rajeshwar also is working with Brian Dennis, a UTA associate professor of mechanical and aerospace engineering, and Norma Tacconi, a research associate professor of chemistry and biochemistry, on a project with NASA to develop improved methods for oxygen recovery and reuse aboard human spacecraft.
The team is designing, building and demonstrating a "microfluidic electrochemical reactor" to recover oxygen from carbon dioxide extracted from cabin air. The prototype will be built over the next months at the Center for Renewable Energy Science and Technology at UTA.
Rajeshwar joined the College of Science in 1983, is a charter member of the UTA Academy of Distinguished Scholars and senior vice president of The Electrochemical Society, an organization representing the nation's premier researchers who are dedicated the advancing solid state, electrochemical science and technology.
He is an expert in photoelectrochemistry, nanocomposites, electrochemistry and conducting polymers, and has received numerous awards, including the Wilfred T. Doherty Award from the American Chemical Society and the Energy Technology Division Research Award of the Electrochemical Society.
Rajeshwar earned his Ph.D. in chemistry from the Indian Institute of Science in Bangalore, India, and completed his post-doctoral training in Colorado State University.
####
About University of Texas at Arlington
The University of Texas at Arlington is a Carnegie "highest research activity" institution of more than 50,000 students in campus-based and online degree programs and is the second-largest institution in The University of Texas System. The Chronicle of Higher Education ranked UTA as one of the 20 fastest-growing public research universities in the nation in 2014. U.S. News & World Report ranks UTA fifth in the nation for undergraduate diversity. The University is a Hispanic-Serving Institution and is ranked as the top four-year college in Texas for veterans on Military Times' 2016 Best for Vets list. Visit www.uta.edu to learn more, and find UTA rankings and recognition at www.uta.edu/uta/about/rankings.php.
For more information, please click here
Contacts:
Louisa Kellie
817-524-8926
Copyright © University of Texas at Arlington
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives Ł1 million grant to revolutionize miniature optical devices May 17th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||