Home > Press > Deep Space Industries teams with UTIAS Space Flight Laboratory to demonstrate autonomous spacecraft maneuvering: SFL and DSI demonstrate enabling technology for low-cost asteroid missions and constellations
UTIAS Space Flight Laboratory. CanX-4 and CanX-5 are a pair of identical nanosatellites built by the Space Flight Laboratory, and launched in June 2014. The pair accomplished their dual satellite formation flying mission in October of that year. The satellites were recently re-tasked by SFL operators to perform a command and control relay experiment for Deep Space Industries, in advance of DSI’s upcoming asteroid mining missions. |
Abstract:
The world’s first demonstration of autonomous spacecraft maneuvering was recently completed by Silicon Valley-based Deep Space Industries (DSI) and the Space Flight Laboratory (SFL) of Toronto, Canada. Using their highly-successful CanX-4 and CanX-5 pair of nanosatellites, SFL operators executed a DSI-defined experiment on-orbit, in which the world’s first spacecraft-to-spacecraft orbit maneuver was commanded by one satellite and executed by the other.
In this experiment, one of the two spacecraft (CanX-4) autonomously programmed the other (CanX-5) to perform an orbit change using its on-board propulsion system, over a shared S-band Inter-Satellite Link (ISL) radio. CanX-5 subsequently executed the maneuver, raising its orbit, as confirmed by operators at SFL’s Mission Control Center (MCC) in Toronto and data from the Joint Space Operations Center (JSpOC) at Vandenberg Air Force Base.
To the best of each organization’s knowledge, this is the first time in history that one satellite has autonomously commanded another to execute propulsive maneuvers, with no operator in the loop.
“This experiment was a key demonstration of a critical capability for multi-spacecraft asteroid missions, as well as constellations of spacecraft in Earth orbit,” said Grant Bonin, DSI’s Chief Engineer.” It was also a first step in demonstrating ship-to-shore command relay in-space, which could potentially reduce the difficulty of communicating with very small spacecraft at long range.”
“The experiment was an important risk reduction exercise for DSI, which intends to use small spacecraft for initial asteroid prospecting missions in the next five years,” Bonin continued. “The ability to relay commands from spacecraft to spacecraft, and perform in-space maneuvers autonomously, without operator intervention, is a critical capability that has major implications for mission-level redundancy—not just for asteroid missions, but also for low-cost Earth orbit constellations. This also shows that, if necessary, we can take the operator entirely out of the loop during a mission, which can translate into significant savings.”
Deep Space Industries’ partner, the Space Flight Laboratory at the University of Toronto Institute for Aerospace Studies (UTIAS), challenges the current state-of-the-art in space technology performance while achieving remarkably low cost without sacrificing quality or introducing risk. In an age where significant advances have been made in data processing and information technology, SFL strives to leverage the latest advances in commercial technologies to provide performance advantage in space for tomorrow’s space-based data users. The organizations’ high rate of success and distinguished legacy of being on the forefront of space technology make the team a great fit for partnering with Deep Space Industries.
“Teaming with a satellite provider like SFL is a big win for us,” said DSI CEO Daniel Faber. “DSI’s philosophy is to partner with other organizations whenever it makes sense, in a way that maximizes complementary capabilities. Having a partner like SFL allows us to tap into almost 20 years of heritage, experience, and capabilities, while giving DSI the capacity to focus on key elements of its own roadmap, by leveraging already well-honed skill sets that exist elsewhere.”
“We are very pleased to have contributed to DSI’s objectives through the tasking of CanX-4 and CanX-5. SFL welcomes the opportunity to partner with DSI, and we see great potential in such collaboration,” noted Dr. Robert Zee, Director of SFL. “For SFL, it is an opportunity to apply our heritage and experience in an emerging application area, one that can potentially revolutionize humanity’s use of deep space. SFL recognizes the pioneering work of DSI and their talented team, and looks forward to future projects with DSI."
Bonin concluded: “Technologies such as launch-safe high-performance propulsion systems, long-range, high-data-rate communications, and autonomous spacecraft relative navigation are at the core of DSI’s current technology development efforts. By combining our enabling technologies with the excellent satellite platforms being offered by SFL, DSI can provide innovative, reliable and robust systems for a wide range of customers and mission types, both in Low Earth Orbit and beyond.”
This work is the first project in what both organizations expect to be a long-term strategic relationship to bring cutting-edge, low-cost space technologies and missions to market, while also enabling low-cost asteroid missions.
####
About Deep Space Industries (DSI)
Deep Space Industries is an international space resources company, utilizing the most advanced nanosat technologies to realize asteroid mining. To learn more about DSI’s asteroid mining projects, innovative technology, or world-renowned team of experts, please visit: DeepSpaceIndustries.com.
For more information, please click here
Contacts:
Deep Space Industries
NASA Research Park
Building 156, Suite 204
Moffett Field, CA 94035
Copyright © Deep Space Industries (DSI)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Mining/Extraction/Drilling
Chile coating and composite industry makes leap forward leveraging graphene nanotube solutions April 9th, 2021
Membrane technology could cut emissions and energy use in oil refining July 17th, 2020
Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Aerospace/Space
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024
Bridging light and electrons January 12th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||