Home > Press > New sensors to combat the proliferation of bacteria in very high-humidity environments
![]() |
Abstract:
The engineer Aitor Urrutia has received his PhD with these devices that combine nanotechnology and fibre optics for use in hospitals or on industrial premises.
The Telecommunications Engineer Aitor Urrutia-Azcona has designed some humidity sensors with anti-bacterial properties that combat the proliferation of micro-organisms in environments where the humidity level is very high, such as hospitals and industrial premises for foodstuffs or pharmaceutical products. These devices combining nanotechnology and fibre optics are part of his PhD thesis read at the Public University of Navarre (NUP/UPNA).
“Humidity is one of the most controlled and most monitored aspects nowadays owing to its great importance in a whole range of industrial processes or in areas such as food monitoring, air quality, biomedicine or chemistry,” explained Aitor Urrutia, who is from Auritz/Burguete, but who currently resides in Irúñea-Pamplona. “Yet problems remain in terms of measuring and monitoring it in specific situations such as environments where the humidity level is very high”.
The proliferation of bacteria in such environments where the humidity is very high is common and this leads to the formation of “biofilms” which are ecosystems made up of these microorganisms attached to a surface. This leads to the problem known as biofouling which causes “the deterioration of many materials and devices, affects their performance and cuts their service lifetimes. Right now, the costs arising out of biofouling are very high mainly because of the maintenance work or replacement of equipment,” pointed out Urrutia.
When considering this widespread problem, in his PhD thesis Aitor Urrutia set about building new humidity sensors that would have antibacterial properties for applications that function in environments where the humidity is high and which are conducive to bacterial growth, and thus prevent the creation of biofilms and overcome biofouling.
Combining nanotechnology and fibre optics
To develop the various humidity sensors, Aitor Urrutia based himself on the combination of the latest advances in nanotechnology (new materials and new manufacturing techniques for coatings and nanoparticles) over new fibre optic configurations. “The sensors developed are made up of an optic structure to which coatings with a thickness of less than one micron are applied,” pointed out the new PhD holder. “Thanks to the embedded silver nanoparticles included, these coatings provide the sensors with two additional functionalities: antibacterial properties and increased sensitivity. That way, the new sensors developed have longer service lifetimes and perform better”.
What is more, these fibre optic sensors offer additional advantages such as “their biocompatibility, immunity with respect to electromagnetic interference, their low cost, size and weight, and the possibility of long-distance measuring,” according to Urrutia, whose PhD thesis was supervised by the lecturers in the Department of Electrical and Electronic Engineering Francisco J. Arregui-San Martín and Javier Goicoechea-Fernández.
The new humidity sensors developed could be integrated into a wide variety of sectors, such as, for example, health centres and hospitals to monitor human respiration, among other applications; on premises and in chambers used in processes in the foodstuff and pharmaceutical industry; in biotechnology and home automation; and in the monitoring of structures or cavities that are difficult to access, such as cooling towers or off-shore facilities.
Full bibliographic information
P. J. Rivero, A. Urrutia, J. Goicoechea, F. J. Arregui, (2015) "Nanomaterials for functional textiles and fibers," Nanoscale Research Letters 10 (1) 501: 1-2,. doi:10.1186/s11671-015-1195-6
####
About Elhuyar Fundazioa
Elhuyar Fundazioa is a Science and Technology Foundation. Its first mission is to make science accessible to ordinary people and work with our language euskara. Within our product we have dictionaries, University books, web-pages, journals, radio programs and TV programs.
For more information, please click here
Contacts:
Oihane Lakar Iraizoz
0034-943-363040
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Industrial
Quantum interference in molecule-surface collisions February 28th, 2025
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
Photonics/Optics/Lasers
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Programmable electron-induced color router array May 14th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |