Home > Press > Aromatics Detection Made Easy by New Sensor Produced by Using MOFs
Abstract:
Iranian researchers from Tarbiat Modarres University succeeded in the laboratorial production of Metal Organic Framework (MOF) nanostructures that can be used as sensor to detect environmental aromatic pollutants.
Sensors made of this nanostructure have high accuracy and detection rate, and they reduce detection costs.
In this research, metal organic frameworks have been synthesized with nanometric pores to be used as sensor in the detection of environmental pollutants. The detection of small molecules is among the important abilities of MOFs. Therefore, MOFs are very popular in detecting and eliminating the toxic materials such as aromatics.
The proposed nanostructure has a better hydrophilicity than the previous sample, and therefore, it can react with aromatics in a selective manner. The application of this structure in the production of sensors increases the rate and accuracy in the performance of sensor in detecting organic pollutants. Mass production of the sensor is an important step in the removal of aromatic biological pollutants.
The desirable structure of the prototype was synthesized after the design through solothermal method. The crystalline structure of the product was determined by using single crystalline x-ray test. The product was also characterized by using spectrometry methods. In the end, performance of the nanostructure as a sensor to detect aromatics was studied and compared to that of the previous samples.
Results of the research have been published in Crystal Growth and Design, vol. 15, issue 11, 2015 pp. 5543-5547.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Environment
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |