Home > Press > Quick Detection of hCG Hormone by Biosensors in Iran
Abstract:
Iranian researchers used nanoparticles to design a highly accurate and high speed biosensor to detect hCG hormone.
The sensor has been made of biocompatible, stable and cheap raw materials and it can be used in medical diagnosis centers and clinics after mass production. The research has been carried out at the laboratorial scale.
HCG is the first hormone that is created during pregnancy by the mate and in some diseases by various types of tumors. Quick increase in the amount of hormone in blood or urine exactly after the impregnation is an ideal indicator to confirm pregnancy. Therefore, it is very important to measure this hormone in clinics and diagnosis centers.
Biosensors that minimize the effect of other components in biological liquids during the diagnosis are among the tools that attract attention of researchers. In this research, efforts have been made to design a biosensor by using nanoparticles, which can accurately detect the desirable hormone in a selective manner. The most important objective of the research was to eliminate the need for advanced and expensive devices to measure this hormone.
Results of the research can be used in medical and therapeutic centers. In addition, a new window can be opened to the production immunosensors by using this method.
Results of the research have been published in Sensors and Actuators B Chemical, vol. 222, 2016, pp. 1103-1111.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Nanomedicine
    New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Sensors
    Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
    Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||