Home > Press > Biodegradable Nanoparticles Applied to Produce Nanocomposite Films
Abstract:
Iranian researchers from Yasouj University used a simple and quick method to produce bio-nanocomposites with high strength.
The nanocomposites are biodegradable and cost effective and have applications in paint and coating industries and the production of glue.
Cellulose is the most abundant biodegradable and renewable natural polymer in the world. Cellulose materials, including cellulose microfibers, micro-cellulose and cellulose nanocrystals, have been used as reinforcement fillers in a wide range of polymeric matrices.
Based on the results, the biodegradable and cheap nanoparticles significantly improve polymeric properties of polyurethane such as mechanical and thermal properties. The produced nanocomposites actually have higher strength and toughness than the pure polyurethane. This fact enables the nanocomposites to be used in body implants like the cardiovascular implants.
The samples have been produced by dispersing micro-crystalline cellulose in polyurethane monomers through polymerization method.
The produced nanocomposites have more strength in comparison with pure polymer because of covalent interactions and hydrogen bonds between polyurethane and cellulose nanochains. In addition, thermometric tests prove the significant improvement in thermal stability of the bio-nanocomposites in comparison with the pure polymer.
Results of the research have been published in Progress in Organic Coatings, vol. 86, 2015, pp. 190-193.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Quantum interference in molecule-surface collisions February 28th, 2025
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |