Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers develop nanoscale probes for ssDNA sustainability under UV radiation: Innovative approach integrating multi-color fluorescence experiments with quantum mechanical theory has great potential for monitoring DNA radiation damage live

DNA wrapped around nanotube (right inset) is capable to recover after absorbing ultraviolet (UV) radiation by an autoionization process. Experimental two-color fluorescence spectroscopy (left) was combined with quantum mechanical calculations (right and middle inset) to explain the anomalous fluorescence quenching in nanotube under UV illumination.
CREDIT: Slava V. Rotkin, Tetyana Ignatova, Michael Blades, Alexander Balaeff, Ming Zheng and Peter Stoeckl
DNA wrapped around nanotube (right inset) is capable to recover after absorbing ultraviolet (UV) radiation by an autoionization process. Experimental two-color fluorescence spectroscopy (left) was combined with quantum mechanical calculations (right and middle inset) to explain the anomalous fluorescence quenching in nanotube under UV illumination.

CREDIT: Slava V. Rotkin, Tetyana Ignatova, Michael Blades, Alexander Balaeff, Ming Zheng and Peter Stoeckl

Abstract:
DNA, which stores genetic information in the majority of organisms on Earth, is not easily destroyed. It readily absorbs ultraviolet (UV) radiation, but finds ways to recover.

Researchers develop nanoscale probes for ssDNA sustainability under UV radiation: Innovative approach integrating multi-color fluorescence experiments with quantum mechanical theory has great potential for monitoring DNA radiation damage live

Bethlehem, PA | Posted on December 9th, 2015

To combat radiation's damage, cells have developed DNA repair mechanisms, as well as mechanisms to remove the energy before it breaks the DNA, such as autoionization, which is the process by which the macro-molecule in an excited state spontaneously emits one of its electrons, releasing a huge amount of energy. Understanding this mechanism is critical to investigating and mitigating the effects of radiation on living organisms.

A team of researchers from Lehigh University (Slava V. Rotkin, Tetyana Ignatova, Michael Blades), the University of Central Florida (Alexander Balaeff), the National Institute of Standards and Technology (Ming Zheng) and a student from the University of Rochester participating in the NSF-Supported "Research Experiences for Undergraduates" (REU) Summer Program at Lehigh (Peter Stoeckl) set out to understand the stability of DNA as a carrier of genetic information against potential damage by UV radiation. They have reported their findings in a paper recently accepted for publication in Nano Research.

Rotkin and his colleagues studied self-assembled complexes of DNA wrapped around single-wall carbon nanotubes utilizing a special technique: two-color photoluminescence spectroscopy. Using the UV and green light simultaneously to probe the sample provided a perspective that no one had been able to observe before in single-color experiments. Later, a quantum mechanical theory was developed to support the experimental data and they were able to confirm a very fast DNA autoionization rate.

"Being able to establish the efficiency of the autoionization process is a key step in understanding how UV-excited DNA can 'cool down' without breaking, thus keeping its normal biological functions," said Rotkin, a professor in Lehigh's Department of Physics and Department of Materials Science & Engineering.

The team's innovative approach has great potential for monitoring DNA excitation, autoionization and chemical damage important for such diverse fields as medicine, evolutionary biology, and space exploration. For biomedical purposes, the ability to study the autoionization mechanism could contribute to an understanding of the survivable levels of UV radiation for different cell types and ways to mitigate irradiation effects. From an evolutionary perspective, it is important to understand the dissipation mechanisms which were crucial during primordial cell evolution when UV radiation was orders of magnitude more intense than today while the DNA repair mechanisms were presumably non-existent. For continued exploration of space, it is important to develop strategies for cellular and organismal safety in harsh radiation conditions.

It took the researchers three years to collect the data and analyze the effects. "We found abnormal behavior of the nanotube emission: it seemed like something was 'stealing' the emitted light under the second-color UV illumination," said Rotkin. "This field is still extremely underexplored. No one had seen this before and we had to hypothesize about the two-color data for a while, putting forward and experimentally rejecting various models in order to find the right interpretation."

It was only when they assumed that the DNA was the source of the observed phenomenon--and rejected a widely accepted model--that the researchers were they able to fully understand nanotube optical quenching.

DNA is very useful for studying nanotubes. A strand of DNA wrapped around a single carbon nanotube-- a miniature cylindrical carbon structure that has a hexagonal graphite lattice and walls that are only one atom thick--will hold the nanotube in water and allow it to have practically the same good optical properties as pristine material.

Initially, the researchers were surprised to observe changes in the nanotube's optical properties as the UV light was applied to the samples.

"For years it has been commonly accepted that DNA is an 'inert' carrier for nanotubes and that DNA holds the nanotube in water without changing its properties," added Rotkin. "It took several years for our team to part with this commonly-held idea, because it was so broadly accepted. Finally, after a series of additional experiments, the data clearly indicated the origin of the modulation to be the DNA itself."

On the heels of this discovery, the researchers have shifted the focus of their project to see how their two-color photoluminescence spectroscopy technique could be used to further probe the properties of DNA.

"It is now understood that different DNA nucleobases show different autoionization properties," concluded Rotkin. "We anticipate this will create unprecedented non-invasive biomolecular tools for solving critical problems of biophysics of nucleic acids."

The study was funded by the National Science Foundation (NSF:ECCS) within the project called "Fundamental physics and biosensing applications of composite fluorescent nanomaterials - rare-earths combined with DNA-enclosed carbon nanotubes."

####

For more information, please click here

Contacts:
Lori Friedman

610-758-3224

Copyright © Lehigh University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Physics

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Nanobiotechnology

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project