Home > Press > Portable device can quickly determine the extent of an eye injury
The new sensor can detect differences in vitamin C concentration in fluids that leak from the eye. Higher concentrations indicate a more severe injury, the researchers report.
Photo by L. Brian Stauffer |
Abstract:
n engineer and an ophthalmologist are working together to develop a portable sensor that can quickly and inexpensively determine whether an eye injury is mild or severe. The device, called OcuCheck, works by measuring levels of vitamin C in the fluids that coat or leak from the eye. The sensor could speed efforts to determine the extent of eye injuries at accident sites, in rural areas lacking ophthalmology specialists or on the battlefield, the researchers said.
“The sensor takes advantage of the fact that the ocular tear film – the viscous fluid that coats the eyeball – contains low levels of ascorbic acid, which is just vitamin C, while the interior of the eye contains much higher levels,” said University of Illinois bioengineering professor Dipanjan Pan, who is creating the device in collaboration with Carle ophthalmologist Dr. Leanne Labriola. “So the concept is, if there is severe damage to the eye that penetrates deeply, the ascorbic acid will leak out in high concentration.”
Two postdoctoral researchers in Pan’s laboratory, Manas Gartia and Santosh Misra, helped develop the new sensor. The researchers report their work in the journal Scientific Reports.
At present, those with eye injuries must find their way to a hospital to have their injuries assessed. The process is often complicated, time-consuming and imprecise, Pan said.
“The new device will change the standard of care for evaluating eye traumas,” Labriola said.
No current techniques for assessing eye injuries involve measurements of ascorbic acid, Pan said. “So this is a one-of-a-kind approach.”
“The idea is that the moment that the ascorbic acid comes in and binds to the ascorbate oxidase, it will pull the polymer out of its interaction with the graphene,” changing the sensor’s electrical properties, Pan said.
In tests with clinical samples from 16 patients undergoing eye surgery, the team found that their sensor could – with high sensitivity, accuracy and specificity – detect a range of ascorbic acid concentrations.
OcuCheck has not yet been tested on samples from trauma patients, Pan said.
“But we have mixed the samples with blood, and the sensor’s sensitivity to ascorbic acid is retained even in the presence of blood. The filter paper will filter out the blood,” he said.
“This technology has the ability to impact a large number of patients, particularly in rural settings, where access to an ophthalmologist can be limited,” Labriola said.
The team is working with an industrial design professor at Illinois to build a housing for the sensor that will be portable and easy to use, Pan said. Pan and Labriola have founded a new company, InnSight Technology, to help them bring the device to market. The company has obtained a phase I Small Business Innovation Research grant from the National Science Foundation.
“This is a perfect example of physicians and engineers working together to find solutions to current problems in health care,” Pan said, referring to the Carle Illinois College of Medicine, a new engineering-based medical college soon to be established on Illinois’ Urbana-Champaign campus.
The University of Illinois and the Children’s Discovery Institute supported this research. Pan also is a faculty member in the Beckman Institute for Advanced Science and Technology at the U. of I.
####
For more information, please click here
Contacts:
Diana Yates
Life Sciences Editor
217-333-5802
Dipanjan Pan
217-244-2938
Copyright © University of Illinois at Urbana-Champaign
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||