Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Breakthrough allows tracking of single molecules in 3-D with nanoscale accuracy:New method builds on Nobel Prize-winning technique, with exciting implications for understanding the inner workings of cells and neurons

Abstract:
An innovative approach to calibrating high-tech microscopes enables researchers to track the movement of single molecules in 3D at the nanoscale.

Breakthrough allows tracking of single molecules in 3-D with nanoscale accuracy:New method builds on Nobel Prize-winning technique, with exciting implications for understanding the inner workings of cells and neurons

Washington, DC | Posted on November 23rd, 2015

A Stanford University research team, led by W. E. Moerner, extends the work that earned Moerner and colleagues Eric Betzig and Stefan W. Hell the 2014 Nobel Prize for Chemistry. Betzig and Moerner pioneered the development of super-resolution imaging, which broke the diffraction limit of optical microscopy by using the fluorescence of single molecules for the first time. The new work, published in The Optical Society's high impact journal Optica, demonstrates a marked improvement in the accuracy of this imaging technique and for tracking molecules in three dimensions.

Tracking how molecules move, form shapes and interact within the body's cells and neurons offers a powerful new view of key biological processes such as signaling, cell division and neuron communication, all of which impact people's health and susceptibility to disease.

Capitalizing on a Transformation in Microscopy

Super-resolution microscopy uses lasers to excite fluorescence from single molecules under conditions where only a few are emitting at a time, overcoming the traditional resolution limit for optical microscopy set by the diffraction limit of light.

"With the advent of super-resolution imaging, we improved the resolution by a factor of 5 to 10 beyond the diffraction limit - from 200 nanometers down to 40 or even 10 nanometers," Moerner said. "This new world of greatly increased resolution brings a big transformation in how the optical system works."

However, previous calibration techniques for super-resolution microscopy were not sufficiently accurate for 3D measurements of single molecules. The new calibration method uses a nanohole array to correct for optical distortions across a widefield microscope's entire field of view.

Dealing with Distortion

When imaging at the scale of single molecules, a single point of light coming from a molecule can typically be located with around 10-nanometer precision. At such high resolutions, any small imperfections in an optical system introduce image distortions, or aberrations, which can significantly skew measurements, particularly in 3D. The resulting errors could mean the difference between interpreting two molecules as interacting or simply being close to each other.

While many use fluorescent beads to calibrate 3D microscopes, Alex von Diezmann, doctoral candidate at the Moerner Lab, Stanford University, took a different approach. He created an array of holes in a metal film, each smaller than 200 nanometers and regularly spaced 2.5 microns apart, to use as a 3D calibration standard. Once the holes were filled with fluorescent dyes, the array could be used to calibrate for optical errors across the microscope's entire field of view, not just at a few select spots, as is possible using fluorescent beads. Using this technique, the researchers were able to correct aberrations of 50-100 nanometers to just 25 nanometers.

"Prior to this, people had not explicitly worried about these aberrations," von Diezmann said. "The fact that we demonstrated the presence of field-dependent aberrations, and showed that they could degrade images, is an important part of this work."

The researchers studied the new calibration technique with double-helix and astigmatic point spread functions, two types of optical modification typically used to extract z-axis location. Although both point spread functions showed z-axis related inaccuracies that created about a 20 percent error in the 3D measurements, the researchers corrected these aberrations using the 3D nanohole array.

Demonstrating Benefits for Study of Proteins in Bacteria

The researchers are now applying the new 3D calibration technique to all their single-molecule tracking and super-resolution microscopy studies. For example, von Diezmann is using it to study protein localization in bacteria that measure only two microns in length. With the 3D calibration technique, he can accurately measure and track key signaling proteins in nanodomains that are only 150 to 200 nanometers in size.

The researchers point out that correcting field-dependent and other types of aberrations is becoming more and more important as optical microscopy techniques evolve to image deeper into cells, for example.

"We studied this approach for a couple of cases, but it can be used with any super-resolution or localization microscopy that requires really precise 3D measurements," said von Diezmann. "It will be exciting to see other groups use it to figure out how their particular technique is affected by field-dependent aberrations. As a community, maybe we can find even better ways of dealing with these aberrations."

Researchers produced a 3D calibration tool by creating an array of nanoscale holes filled with fluorescent dye. In (a), widefield illumination (green) passes through the glass coverslip into a nanohole etched into a layer of aluminum. The solution of fluorescent dye fills the holes, and the resulting points of light (orange) are detected from below. Figure (b) shows a scanning electron microscope image of the holes, which are each 200 nanometers or less in diameter.

###

Paper: A. von Diezmann, M.Y. Lee, M.D. Lew, and W. E. Moerner, "Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy," Optica, 2, 11, 985 (2015). doi: 10.1364/OPTICA. 2.000985.

####

About The Optical Society
Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and entrepreneurs who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. OSA is a founding partner of the National Photonics Initiative and the 2015 International Year of Light. For more information, visit: osa.org.

About Optica

Optica is an open-access, online-only journal dedicated to the rapid dissemination of high-impact peer-reviewed research across the entire spectrum of optics and photonics. Published monthly by The Optical Society (OSA), Optica provides a forum for pioneering research to be swiftly accessed by the international community, whether that research is theoretical or experimental, fundamental or applied. Optica maintains a distinguished editorial board of more than 20 associate editors from around the world and is overseen by Editor-in-Chief Alex Gaeta, Columbia University, USA. For more information, visit Optica.

For more information, please click here

Contacts:
Kelly Mack

202-296-2002

Media Contacts:
Rebecca B. Andersen
The Optical Society
+1 202.416.1443

Joshua Miller
The Optical Society

+1 202.416.1435

Copyright © The Optical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project