Home > Press > Researchers detail how to control shape, structure of DNA and RNA
Researchers used a computer model of gold nanoparticles and ligands to determine how nucleic acids respond to various charges. In technical language, the image shows the binding of alkyl ligand functionalized gold nanoparticles with protonated amine end groups (the blue spheres) to double stranded DNA. Image credit: Jessica Nash. |
Abstract:
“Characterization of Nucleic Acid Compaction with Histone-Mimic Nanoparticles through All-Atom Molecular Dynamics”
Authors: Jessica A. Nash, Abhishek Singh, Nan K. Li, and Yaroslava G. Yingling, North Carolina State University
Published: Nov. 2, ACS Nano
DOI: 10.1021/acsnano.5b05684
Abstract: The development of nucleic acid (NA) based nanotechnology applications rely on the efficient packaging of DNA and RNA. However, the atomic details of NA-nanoparticle binding remain to be comprehensively characterized. Here, we examined how nanoparticle and solvent properties affect NA compaction. Our large scale all-atom simulations of ligand-functionalized gold nanoparticle (NP) binding to double stranded NAs as a function of NP charge and solution salt concentration reveal different responses of RNA and DNA to cationic NPs. We demonstrate that the ability of a nanoparticle to bend DNA is directly correlated with the NPs charge and ligand corona shape, where more than 50% charge neutralization and spherical shape of the NP ligand corona ensured the DNA compaction. However, NP with 100% charge neutralization is needed to bend DNA almost as efficiently as the histone octamer. For RNA in 0.1 M NaCl, even the most highly charged nanoparticles are not capable of causing bending due to charged ligand end groups binding internally to the major groove of RNA. We show that RNA compaction can only be achieved through a combination of highly charged nanoparticles with low salt concentration. Upon interactions with highly charged NPs, DNA bends through periodic variation in groove widths and depths, whereas RNA bends through expansion of the major groove.
Researchers at North Carolina State University have used computational modelling to shed light on precisely how charged gold nanoparticles influence the structure of DNA and RNA - which may lead to new techniques for manipulating these genetic materials.
The work holds promise for developing applications that can store and transport genetic information, create custom scaffolds for bioelectronics and create new drug delivery technologies.
"In nature, meters of DNA are packed tightly into every living cell," says Jessica Nash, a Ph.D. student at NC State and lead author of a paper on the work. "This is possible because the DNA is wrapped tightly around a positively charged protein called a histone. We'd like to be able to shape DNA using a similar approach that replaces the histone with a charged gold nanoparticle. So we used computational techniques to determine exactly how different charges influence the curvature of nucleic acids - DNA and RNA."
In their model, the researchers manipulated the charge of the gold nanoparticles by adding or removing positively charged ligands - organic molecules attached to the surface of the nanoparticle. This allowed them to determine how the nucleic acid responded to each level of charge. An animation of a nanoparticle and ligands shaping a strand of DNA is available at https://www.youtube.com/watch?v=kNpvPyc2bmc&feature=youtu.be.
"This will let researchers know what to expect - how much charge they need in order to get the desired curvature in the nucleic acid," says Yaroslava Yingling, an associate professor of materials science and engineering at NC State and corresponding author of the paper.
"We used ligands in the model, but there are other ways to manipulate the charge of the nanoparticles," says Abhishek Singh, a postdoctoral researcher at NC State and co-author of the paper. "For example, if the nanoparticles and nucleic acid are in solution, you can change the charge by changing the pH of the solution."
The work is also significant because it highlights how far computational research has come in materials science.
"Our large-scale models account for every atom involved in the process," says Nan Li, a Ph.D. student at NC State and co-author of the paper. "This is an example of how we can use advanced computational hardware, such as the GPUs - or graphics processing units - developed for use in videogames, to conduct state-of-the-art scientific simulations."
The research team is now building on these findings to design new nanoparticles with different shapes and surface chemistries to get even more control over the shape and structure of nucleic acids.
"No one has come close to matching nature's efficiency when it comes to wrapping and unwrapping nucleic acids," Yingling says. "We're trying to advance our understanding of precisely how that works."
####
For more information, please click here
Contacts:
Matt Shipman
919-515-6386
Yaroslava Yingling
919.513.2624
Copyright © North Carolina State University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||