Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Dendrimer technology gets a grip on cell proteins, could improve cancer treatment

Purdue biochemistry professor W. Andy Tao's TITAN technology uses tiny dendrimers to illuminate complex cell processes.
CREDIT: Purdue University/Tom Campbell
Purdue biochemistry professor W. Andy Tao's TITAN technology uses tiny dendrimers to illuminate complex cell processes.

CREDIT: Purdue University/Tom Campbell

Abstract:
Time-resolved proteomic visualization of dendrimer cellular entry and trafficking

Linna Wang 1; Li Yang 1; Li Pan 2; Naveen Reddy Kadasala 3; Liang Xue 1; Robert J. Schuster 2; Laurie L. Parker 2; Alexander Wei 3,4; W. Andy Tao 1,2,4

1 Department of Biochemistry, Purdue University, West Lafayette, IN 47907, United States

2 Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States

3 Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States

4 Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States

E-mail:

Our understanding of the complex cell entry pathways would greatly benefit from a comprehensive characterization of key proteins involved in this dynamic process. Here we devise a novel proteomic strategy named TITAN (Tracing Internalization and TrAfficking of Nanomaterials) to reveal real-time protein-dendrimer interactions using a systems biology approach. Dendrimers functionalized with photoreactive crosslinkers were internalized by HeLa cells and irradiated at set time intervals, then isolated and subjected to quantitative proteomics. In total, 809 interacting proteins crosslinked with dendrimers were determined by TITAN in a detailed temporal manner during dendrimer internalization, traceable to at least two major endocytic mechanisms, clathrin-mediated and caveolar/raft-mediated endocytosis. The direct involvement of the two pathways was further established by the inhibitory effect of dynasore on dendrimer uptake and changes in temporal profiles of key proteins.

Dendrimer technology gets a grip on cell proteins, could improve cancer treatment

West Lafayette, IN | Posted on November 13th, 2015

Purdue researchers have devised a way to capture the finer details of complex cell processes by using tiny synthetic particles known as dendrimers, a technology that could lead to more targeted treatment for cancer.

A precise understanding of how cells engulf small particles, a process known as endocytosis, could help researchers improve drug delivery and reveal the mechanisms of viruses. But the particles "eaten" by cells and the proteins that control cell entry pathways are too little for conventional technologies to detect.

W. Andy Tao, professor of biochemistry, and his collaborators developed a method that sends dendrimers into cells to track, capture and isolate the proteins that regulate the cell internalization process, identifying 809 proteins involved in cell entry pathways.

The technology, known as Tracing Internalization and TrAfficking of Nanomaterials or TITAN, "helps us understand how cells internalize extracellular particles and how they move these particles around," Tao said. "This is all useful, valuable information for the future as we try to disrupt those processes to keep harmful things like viruses out or work with the processes to deliver a helpful drug."

Dendrimers are symmetrically branched nanoparticles, similar in size to naturally occurring proteins. Meaning "tree-like" molecule, a dendrimer's small size and structure make it an ideal courier for transporting a variety of molecules via its many branches into a cell. One of the most valuable roles of dendrimers is targeted drug delivery for diseases such as cancer. Dendrimers can selectively deliver medicine to cancer cells unlike chemotherapy, which destroys healthy and cancerous cells alike.

Tao and the team chemically modified the dendrimers before sending them into cells with a fluorescent tag that would make the dendrimers easier to spot as they traveled within the cell; a photoreactive crosslinker that would enable dendrimers to attach to proteins under UV radiation; and a "handle" with which researchers could fish out the dendrimers from the rest of the cellular material.

When the researchers irradiated the cells, the dendrimers inside grabbed all proteins in their surroundings, providing a real-time, freeze-frame shot of which proteins regulate endocytosis. The team irradiated the cells at three different time intervals - 30 minutes, an hour and two hours.

"We saw different molecules at each time point that told us where the dendrimer was and by which mechanisms it was delivered into the cell," Tao said. "Say you drove to Wal-Mart, but instead of telling me which roads you traveled, you took photos of buildings and landmarks at different time points along the way. Those images will tell me which roads you took. This is the same method."

The researchers used mass spectrometry to isolate and identify hundreds of proteins involved in endocytosis, confirming mechanisms that many biologists had hypothesized previously.

Knowing which proteins guide endocytosis and at which stages could help researchers refine the delivery of nanomedicine and possibly make it more mobile in cells, Tao said.

"We can extract a lot of crucial information from TITAN," he said. "This is a platform technology that opens a new way to study many small-scale biological processes in the cell."

Some of TITAN's potential applications include determining how viruses enter and travel inside cells, revealing how cancer cells communicate with one another and helping track where nanoparticles end up inside the cell, a feature that is relatively unknown.

"A lot of nanotechnology is being developed, but we really have no idea what safety or toxicity issues might be involved," Tao said. "Understanding where these nanoparticles go in the cell and if they degrade over time is important. TITAN can track how nanoparticles move in the cell and whether they end up in the nucleus - which could be a problem - or in the cell's 'garbage disposal.'"

Tao collaborated on the study with Alexander Wei, professor of organic chemistry, and Laurie Parker, previously of Purdue's Department of Medicinal Chemistry and Molecular Pharmacology and now an associate professor at the University of Minnesota.

The National Institutes of Health grants 5R21RR025802 and 5R01GM088317 and the Purdue University Center for Cancer Research provided funding for the research.

####

For more information, please click here

Contacts:
Writer:
Natalie van Hoose

765-496-2050

Source:
W. Andy Tao
765-494-9605

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Cancer

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project