Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotechnology advances could pave way for implantable artificial kidney

Abstract:
Highlights

•New advances in nanopore technology could lead to the development of a surgically implantable, artificial kidney.
•The research, a collaboration between UCSF and Vanderbilt University, was presented at ASN Kidney Week 2015 November 3-8 at the San Diego Convention Center in San Diego, CA.

Nanotechnology advances could pave way for implantable artificial kidney

San Diego, CA | Posted on November 11th, 2015

Research that could lead to the development of a surgically implantable, artificial kidney, was presented at ASN Kidney Week 2015 November 3-8 at the San Diego Convention Center in San Diego, CA. Advances in nanofilter technology were produced in collaboration between investigators from UCSF and Vanderbilt University. The research recently received a new $6 million grant through the National Institute of Biomedical Imaging and Bioengineering's Quantum Program.

A surgically implantable, artificial kidney could be a promising alternative to kidney transplantation or dialysis for people with end stage renal disease (ESRD). Currently, more than 20 million Americans have kidney diseases, and more than 600,000 patients are receiving treatment for ESRD. U.S. government statistics indicate kidney care costs the U.S. health care system $40 billion annually, accounting for more than 6 percent of Medicare spending.

"We aim to conduct clinical trials on an implantable, engineered organ in this decade, and we are coordinating our efforts with both the NIH and the U.S. Food and Drug Administration," said Shuvo Roy, PhD, a UC San Francisco bioengineer who led the research together with Vanderbilt University nephrologist William Fissell, MD.

Roy is the technical director of The Kidney Project at UCSF, a multi-institutional collaboration that has prototyped and begun testing key components of the coffee-cup-sized device, which mimics functions of the human kidney.

One component of the new artificial kidney is a silicon nanofilter to remove toxins, salts, some small molecules, and water from the blood. Roy's research team designed it based on manufacturing methods used in the production of semiconductor electronics and microelectromechanical systems. The new silicon nanofilters offer several advantages -- including more uniform pore size -- over filters now used in dialysis machines, according to Roy. The silicon nanofilter is designed to function on blood pressure alone and without a pump or electrical power.

Fissell, associate professor in the Department of Medicine at Vanderbilt and medical director for The Kidney Project, said the project's goal is to create a permanent solution to the scarcity problem in organ transplantation. "We are increasing the options for people with chronic kidney disease who would otherwise be forced onto dialysis," Fissell added.

The artificial kidney being developed by Roy and Fissell is designed to be connected internally to the patient's blood supply and bladder and implanted near the patient's own kidneys, which are not removed. Along with Roy at UCSF and Fissell at Vanderbilt, a national team of scientists and engineers at universities and small businesses are working toward making the implantable artificial kidney available to patients.

In September the project was designated for inclusion in the FDA's new Expedited Access Pathway program to speed development, evaluation, and review of medical devices that meet major unmet needs in fighting life-threatening or irreversibly debilitating diseases.

####

About American Society of Nephrology
Founded in 1966, and with nearly 16,000 members, the American Society of Nephrology (ASN) leads the fight against kidney disease by educating health professionals, sharing new knowledge, advancing research, and advocating the highest quality care for patients.

ASN Kidney Week 2015, the largest nephrology meeting of its kind, provided a forum for more than 13,000 professionals to discuss the latest findings in kidney health research and engage in educational sessions related to advances in the care of patients with kidney and related disorders. Kidney Week 2015 was held November 3-8, 2015, in San Diego, CA.

The content of this article does not reflect the views or opinions of The American Society of Nephrology (ASN). Responsibility for the information and views expressed therein lies entirely with the author(s). ASN does not offer medical advice. All content in ASN publications is for informational purposes only, and is not intended to cover all possible uses, directions, precautions, drug interactions, or adverse effects. This content should not be used during a medical emergency or for the diagnosis or treatment of any medical condition. Please consult your doctor or other qualified health care provider if you have any questions about a medical condition, or before taking any drug, changing your diet or commencing or discontinuing any course of treatment. Do not ignore or delay obtaining professional medical advice because of information accessed through ASN. Call 911 or your doctor for all medical emergencies.

For more information, please click here

Contacts:
Kurtis Pivert

202-699-0238

Bob Henkel

202-557-8360

Copyright © American Society of Nephrology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Studies: "Extracorporeal Diffusive Clearance of Silicon Nanopore Membranes in a Pumpless Porcine Blood Circuit" (Abstract FR-PO365); Hemofilter Design Based on Computational Simulations of Pulsatile Flow (Abstract FR-PO366); Enhanced Middle Molecule Clearance by a Biomimetic Dialyzer Membrane (Abstract FR-PO373); Anti-Fouling of Silicon Nanopore Membranes Using SLIPS (Abstract FR-PO374); Substrate Stiffness Regulates Renal Epithelial Cell Cilia Formation via Autocrine TGFβ Signaling (Abstract FR-PO401). Disclosures: Roy and Fissell have ownership in Silicon Kidney, a start-up company that will advance the commercialization of silicon membrane technology. Additional disclosure information is available at:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Events/Classes

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project