Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A new way to look at MOFs: International study challenges prevailing view on how metal organic frameworks store gases

A technique called "gas adsorption crystallography" that provides a new way to study the process by which metal-organic frameworks (MOFs) store immense volumes of gases such a carbon dioxide, hydrogen and methane.
CREDIT: Image by Hexiang Deng
A technique called "gas adsorption crystallography" that provides a new way to study the process by which metal-organic frameworks (MOFs) store immense volumes of gases such a carbon dioxide, hydrogen and methane.

CREDIT: Image by Hexiang Deng

Abstract:
An international collaboration of scientists led by Omar Yaghi, a renowned chemist with the Lawrence Berkeley National Laboratory (Berkeley Lab), has developed a technique they dubbed "gas adsorption crystallography" that provides a new way to study the process by which metal-organic frameworks (MOFs) - 3D crystals with extraordinarily large internal surface areas - are able to store immense volumes of gases such a carbon dioxide, hydrogen and methane. This new look at MOFs led to a discovery that holds promise for the improved design of MOFs tailored specifically for carbon capture, or for the use of hydrogen and natural gas (methane) fuels.

A new way to look at MOFs: International study challenges prevailing view on how metal organic frameworks store gases

Berkeley, CA | Posted on November 10th, 2015

"Up to this point we have been shooting in the dark in our designing of MOFs without really understanding the fundamental reasons for why one MOF is better than another," says Yaghi. "Our new study expands our view and thinking about MOFs by introducing gas-gas interactions and their organization into superlattices that are a major factor in achieving high storage capacity for gases."

Yaghi, who invented MOFs in the early 1990s while at the Arizona State University, is now a faculty scientist with Berkeley Lab's Materials Sciences Division and the University of California (UC) Berkeley Chemistry Department, where he also serves as co-director of the Kavli Energy NanoScience Institute (Kavli-ENSI). For this latest study, Yaghi and Osamu Terasaki, a chemist with Stockholm University, along with collaborators from institutes in the United States, China, South Korea and Saudi Arabia, interfaced a gas adsorption apparatus with a form of X-ray crystallography, called in-situ small angle X-ray scattering (SAXS). The result was a gas adsorption crystallography technique that uncovered evidence of cooperative interactions between gas molecules within a MOF.

"These cooperative gas-gas interactions lead to highly organized behavior, which results in the formation of gas aggregates about 40 nanometers in size," Yaghi says. "The aggregates are arranged in orderly superlattice structures, which is in stark contrast to the prevailing view that the adsorption of gas molecules by MOFs occurs stochastically."

Yaghi and Terasaki are the corresponding authors of a paper describing this study that has been published in Nature. The paper is titled "Extra adsorption and adsorbate superlattice formation in metal-organic frameworks." The lead authors are Hae Sung Cho, Hexiang Deng and Keiichi Miyasaka. Other co-authors are Zhiyue Dong, Minhyung Cho, Alexander Neimark and Jeung Ku Kang.

Since Yaghi's original invention, thousands of different types of MOFs have been created. A typical MOF consists of a metal oxide center surrounded by organic molecules that form a highly porous three-dimensional crystal framework. The variations on this basic structure are virtually limitless and can be customized so that a MOF's pores adsorb specific gas molecules, making MOFs potentially ideal gas storage vessels.

"One gram of MOF has a surface area of up to 10,000 square meters onto which it is possible to compact gas molecules into MOF pores like so many bees on a honeycomb without the high pressures and low temperatures usually required for compressed gas storage," Yaghi says.

The selectivity and uptake capacity of a MOF are determined by the nature of the gas molecule being adsorbed and its interactions with the MOF's constituents. While the interactions of gas molecules with the internal surface of a MOF and among themselves within individual pores have been extensively studied, the gas-gas interactions across a MOF's pore walls have not been explored until now.

With their SAXS-based gas adsorption crystallography technique, Yaghi, Terasaki and their collaborators discovered that local strain in the MOF induced by pore-filling can give rise to collective and long-range gas-gas interactions, resulting in the formation of superlattices that extend over several pores.

"We were able to track and map the distribution and ordering of adsorbate molecules in five members of the mesoporous MOF-74 series along entire adsorption-desorption isotherms," Yaghi says. "In all cases, we found that the capillary condensation that fills the pores gives rise to the formation of extra-adsorption domains that span several neighboring pores and have a higher adsorbate density than non-domain pores."

The next step, Yaghi says, will be to apply this new gas adsorption crystallography technique to other porous molecular systems that can serve as gas storage vessels, such as covalent organic frameworks (COFs) and zeolitic imidazolate frameworks (ZIFs).

"We want to generate a comprehensive view of how various gases interact collectively within porous materials interior," says Yaghi. "We will then feed this data into computer models to improve the theory of gas adsorption."

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

For more information, please click here

Contacts:
Lynn Yarris

510-486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Environment

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project