Home > Press > Researchers build nanoscale autonomous walking machine from DNA
Graphic by Jenna Luecke |
Abstract:
Researchers at The University of Texas at Austin have developed a nanoscale machine made of DNA that can randomly walk in any direction across bumpy surfaces. Future applications of such a DNA walker might include a cancer detector that could roam the human body searching for cancerous cells and tagging them for medical imaging or drug targeting.
The study by researchers Cheulhee Jung, Peter B. Allen and Andrew Ellington, published this week in the journal Nature Nanotechnology, developed DNA machines that were able to walk, unprogrammed and in different directions, over a DNA-coated surface. Previously, nanoparticle walkers were only able to walk on precise and programmed one- and two-dimensional paths. This walker was able to move 36 steps, and its movement in a random fashion is different from movement seen in other studies.
"This is an important step forward in developing nanoscale nucleic acid machines that can autonomously act under a variety of conditions, including in the body," said Ellington, professor in the Department of Molecular Biosciences and member of the UT Center for Systems and Synthetic Biology. "DNA nanotechnology is especially interesting because it explores the world of 'matter computers,' where computations (including walking) are carried out by physical objects, rather than by electronic or magnetic shuttles. DNA walkers may eventually allow protective cells to walk the surface of organs, constantly computing whether a cancer is present."
More immediate practical applications may include deploying the DNA walker in the body so that it can amplify signals from cancer cells to make them more easily identified and targeted by doctors. There also may be implications for future delivery of nanoscale therapeutics.
Although it may be a long march from diagnosing cancer to curing it, "All breakthroughs begin with baby steps. Only in this case, they are the steps of a DNA walker," said co-author Jung.
The walker is made from a single piece of DNA with two legs connected by a torso. Like a human, it moves by putting one leg forward, then lifting the other leg and putting it forward. The walker autonomously and randomly decides where to put its leg on each step. The study demonstrated that as the nanoscale machine walked, it did not go over the same area twice.
###
This research was funded by the National Institutes of Health, the Welch Foundation and the U.S. Department of Defense's Office of Naval Research through a National Security, Science and Engineering Faculty Fellowship.
####
For more information, please click here
Contacts:
Chris Cervini
505-980-6110
Copyright © University of Texas at Austin
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Cancer
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Molecular Machines
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanotech scientists create world's smallest origami bird March 17th, 2021
Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020
Molecular Nanotechnology
Quantum pumping in molecular junctions August 16th, 2024
Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||