Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Novel nanoparticles for image-guided phototherapy could improve ovarian cancer treatments: Pioneering research to be featured at 2015 AAPS Annual Meeting and Exposition

Abstract:
Scientists are investigating a biodegradable nanomedicine that can selectively destroy ovarian cancer cells left behind after surgery. These findings are a step forward in the development of targeted therapies for hard-to-treat cancers. This work is being presented Oct. 29 at the 2015 American Association of Pharmaceutical Scientists (AAPS) Annual Meeting and Exposition, the world's largest pharmaceutical sciences meeting, in Orlando, Fla. Oct. 25-29.

Novel nanoparticles for image-guided phototherapy could improve ovarian cancer treatments: Pioneering research to be featured at 2015 AAPS Annual Meeting and Exposition

Orlando, FL | Posted on October 29th, 2015

The American Cancer Society estimates that in 2015, about 21,290 new cases of ovarian cancer will be diagnosed and 14,180 women will die in the U.S. The current standard of care for advanced ovarian cancer is limited to surgery, followed by chemotherapy. In the absence of additional treatment options, approaches like image guided surgery and intraoperative phototherapy are being explored to ensure better tumor removal.

Oleh Taratula, Ph.D., an assistant professor in the Oregon State University College of Pharmacy and colleagues are currently evaluating the potential of molecules called fluorophores to act as internal trackers - injected into the bloodstream before surgery to guide surgeons to residual cancerous cells. Building on this previous work, Taratula is investigating a novel technology that has the ability to locate ovarian tumor cells in the body via a fluorescent signal and destroy them with heat.

The researchers constructed a silicon naphthalocyanine loaded biodegradable polymeric nanoparticle (SiNc-PNP) with near-infrared (NIR) optical properties required for imaging and treatment of deep-seated tumors. After successfully confirming its functionality, the SiNc-PNPs were administered intravenously into mice bearing ovarian cancer tumors. The SiNc-loaded nanoparticles were shown to accumulate predominantly in tumors after 24 hours. The team also demonstrated that the nanoparticles were cleared from the animal's body within 96 hours, an important characteristic for similar nanoplatforms in development, since the U.S. FDA requires all injected contrast agents to be completely vacant from the body in a reasonable time period. Under fluorescence imaging guidance, the tumors were exposed to NIR light for 10 minutes. Out of a total of five mice treated with phototherapy, 100 percent showed complete tumor eradication and no evidence of cancer recurrence after one month. During the course of the study none of the mice treated exhibited weight loss or changes in behavior, or died.

"Given the current barriers associated with existing image guided surgery and phototherapy methods, we set out to create a better nanoplatform that serves as useful tools for surgeons," said Taratula. "These challenges exist because certain compounds are not cancer-specific, demonstrate low fluorescence and phototherapeutic efficiency and gradually fade under light, leading to false negative results. Our nanoparticles are overcoming these issues, acting as an extra pair of eyes and scissors by providing real-time imaging and phototherapy treatment during surgery."

Taratula's team plans to perform image guided surgery in conjunction with their platform on mice using other types of tumor models before moving into large animals and human studies.

###

This work was supported by the Oregon State College of Pharmacy, Oregon State Venture Development Fund and Oregon State General Research Fund.

R6254 - A Nanomedicine Biodegradable Platform for Image-Guided Surgery and Intraoperative Phototherapy for Ovarian Cancer will be presented during the Thursday Morning Poster Session from 8:30 - 11:30 a.m. on Oct. 29 in OCCC - Exhibit Hall WA3.

The 2015 AAPS Annual Meeting and Exposition aims to improve global health through advances in pharmaceutical sciences, and there will be 450 exhibiting companies and an estimated 7,000 attendees. The meeting features nearly 100 programming sessions, including more than 80 symposia and roundtables and more than 2,200 posters. Download the AAPS mobile application for additional information.

####

About American Association of Pharmaceutical Scientists
The American Association of Pharmaceutical Scientists (AAPS) is a professional, scientific organization of approximately 10,000 members employed in academia, industry, government, and other research institutes worldwide. Founded in 1986, AAPS advances the capacity of pharmaceutical scientists to develop products and therapies that improve global health. Visit www.aaps.org today. Follow us on Twitter @AAPSComms; official Twitter hashtag for the meeting is: #AAPS2015.

For more information, please click here

Contacts:
Amanda Johnson

202-587-2520

Copyright © American Association of Pharmaceutical Scientists

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cancer

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Events/Classes

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project