Home > Press > Novel nanoparticles for image-guided phototherapy could improve ovarian cancer treatments: Pioneering research to be featured at 2015 AAPS Annual Meeting and Exposition
Abstract:
Scientists are investigating a biodegradable nanomedicine that can selectively destroy ovarian cancer cells left behind after surgery. These findings are a step forward in the development of targeted therapies for hard-to-treat cancers. This work is being presented Oct. 29 at the 2015 American Association of Pharmaceutical Scientists (AAPS) Annual Meeting and Exposition, the world's largest pharmaceutical sciences meeting, in Orlando, Fla. Oct. 25-29.
The American Cancer Society estimates that in 2015, about 21,290 new cases of ovarian cancer will be diagnosed and 14,180 women will die in the U.S. The current standard of care for advanced ovarian cancer is limited to surgery, followed by chemotherapy. In the absence of additional treatment options, approaches like image guided surgery and intraoperative phototherapy are being explored to ensure better tumor removal.
Oleh Taratula, Ph.D., an assistant professor in the Oregon State University College of Pharmacy and colleagues are currently evaluating the potential of molecules called fluorophores to act as internal trackers - injected into the bloodstream before surgery to guide surgeons to residual cancerous cells. Building on this previous work, Taratula is investigating a novel technology that has the ability to locate ovarian tumor cells in the body via a fluorescent signal and destroy them with heat.
The researchers constructed a silicon naphthalocyanine loaded biodegradable polymeric nanoparticle (SiNc-PNP) with near-infrared (NIR) optical properties required for imaging and treatment of deep-seated tumors. After successfully confirming its functionality, the SiNc-PNPs were administered intravenously into mice bearing ovarian cancer tumors. The SiNc-loaded nanoparticles were shown to accumulate predominantly in tumors after 24 hours. The team also demonstrated that the nanoparticles were cleared from the animal's body within 96 hours, an important characteristic for similar nanoplatforms in development, since the U.S. FDA requires all injected contrast agents to be completely vacant from the body in a reasonable time period. Under fluorescence imaging guidance, the tumors were exposed to NIR light for 10 minutes. Out of a total of five mice treated with phototherapy, 100 percent showed complete tumor eradication and no evidence of cancer recurrence after one month. During the course of the study none of the mice treated exhibited weight loss or changes in behavior, or died.
"Given the current barriers associated with existing image guided surgery and phototherapy methods, we set out to create a better nanoplatform that serves as useful tools for surgeons," said Taratula. "These challenges exist because certain compounds are not cancer-specific, demonstrate low fluorescence and phototherapeutic efficiency and gradually fade under light, leading to false negative results. Our nanoparticles are overcoming these issues, acting as an extra pair of eyes and scissors by providing real-time imaging and phototherapy treatment during surgery."
Taratula's team plans to perform image guided surgery in conjunction with their platform on mice using other types of tumor models before moving into large animals and human studies.
###
This work was supported by the Oregon State College of Pharmacy, Oregon State Venture Development Fund and Oregon State General Research Fund.
R6254 - A Nanomedicine Biodegradable Platform for Image-Guided Surgery and Intraoperative Phototherapy for Ovarian Cancer will be presented during the Thursday Morning Poster Session from 8:30 - 11:30 a.m. on Oct. 29 in OCCC - Exhibit Hall WA3.
The 2015 AAPS Annual Meeting and Exposition aims to improve global health through advances in pharmaceutical sciences, and there will be 450 exhibiting companies and an estimated 7,000 attendees. The meeting features nearly 100 programming sessions, including more than 80 symposia and roundtables and more than 2,200 posters. Download the AAPS mobile application for additional information.
####
About American Association of Pharmaceutical Scientists
The American Association of Pharmaceutical Scientists (AAPS) is a professional, scientific organization of approximately 10,000 members employed in academia, industry, government, and other research institutes worldwide. Founded in 1986, AAPS advances the capacity of pharmaceutical scientists to develop products and therapies that improve global health. Visit www.aaps.org today. Follow us on Twitter @AAPSComms; official Twitter hashtag for the meeting is: #AAPS2015.
For more information, please click here
Contacts:
Amanda Johnson
202-587-2520
Copyright © American Association of Pharmaceutical Scientists
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Cancer
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Events/Classes
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||