Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Umbrella-shaped diamond nanostructures make efficient photon collectors: Umbrella-shaped diamond nanostructures make efficient photon collectors

These are schematic images of analyzed objects and electric field maps calculated by FDTD simulations of (a) bulk diamond, (b) pillar-shaped structures, and (c) umbrella-shaped structures. Cross-sectional schematics, planar field maps at the height A, cross-sectional maps, and planar maps at the height B are shown from top to bottom.
CREDIT: M. Hatano, et al.
These are schematic images of analyzed objects and electric field maps calculated by FDTD simulations of (a) bulk diamond, (b) pillar-shaped structures, and (c) umbrella-shaped structures. Cross-sectional schematics, planar field maps at the height A, cross-sectional maps, and planar maps at the height B are shown from top to bottom.

CREDIT: M. Hatano, et al.

Abstract:
Standard umbrellas come out when the sky turns dark, but in the nanoworld, umbrella shapes may be the next creative way to enhance light emission. Inspired by recent work to enhance the luminescence from diamond nanopillar structures, a team of researchers in Japan has discovered that "umbrella-shaped" diamond nanostructures with metal mirrors on the bottom are more efficient photon collectors than their diamond nanostructure "cousins" of other shapes.

Umbrella-shaped diamond nanostructures make efficient photon collectors: Umbrella-shaped diamond nanostructures make efficient photon collectors

Washington, DC | Posted on October 21st, 2015

By tweaking the shape of the diamond nanostructures into the form of tiny umbrellas, researchers from Tokyo Institute of Technology experimentally showed that the fluorescence intensity of their structures was three to five times greater than that of bulk diamond. They report their results in the journal Applied Physics Letters, from AIP Publishing.

To get started, the team formed the umbrella-shaped diamond nanostructures by using an original "bottom-up" fabrication technique that relies on selective and anisotropic growth through holes in a metal mask. The metal mask also serves as a mirror that is self-aligned to the diamond nanostructures.

"Our umbrella-shaped nanostructure has an effect similar to a solid immersion lens, which reduces the chance of total reflection on its upper surface and focuses the emitted light toward the 'upside' of the structure," explained Mutsuko Hatano, a professor in the Graduate School of Science and Engineering's Department of Physical Electronics at Tokyo Institute of Technology.

The self-aligned mirror goes a step further to enhance the efficiency of collecting this light by reflecting it at the lower surface area of the nanostructure.

"Umbrella-shaped diamond provides significantly better photon collection efficiency than bulk diamond or its pillar-shaped diamond counterpart, which have already been studied extensively," Hatano noted.

The significance of the team's discovery is that they've shown that the brighter fluorescence intensity of umbrella-shaped diamond nanostructures can be achieved by improving the photon collection efficiency of the nitrogen vacancy centers, which are the numerous point defects in diamonds that happen to boast the property of photoluminescence.

These nitrogen vacancy centers possess unique properties such as optical initialization and detection of its spin states, stable and strong fluorescence even from a single center, and long spin coherence time at room temperature. These properties make nitrogen vacancy centers in diamonds candidates for next-generation spin-based quantum devices such as magnetometers, quantum computers, and for research or work involving biological observations. Individual nitrogen vacancy centers could essentially function as the basic units of quantum computers.

Brighter fluorescence intensity is an essential aspect of improving the photon collection efficiency from nitrogen vacancy centers. Due to the high refractive index (2.4) of diamond, the photon collection efficiency from the nitrogen vacancy centers in bulk diamond is low. "In other words, diamond works as an effective light waveguide in low-refractive-index environments," said Hatano.

In terms of applications, the team's nanostructures may find use in highly sensitive magnetic sensors for making biological observations or within the computational science realm for quantum computing and cryptographic communications.

Next, Hatano and colleagues plan to pursue better control of the nanostructures' shape, as well as target a smoother surface by optimizing chemical vapor deposition growth conditions.

"Our goal now is to improve the nanostructures' photon collection efficiency," she said. "We also plan to demonstrate quantum sensors -- in particular, highly sensitive magnetometers intended for life science and medical applications."

The authors of this paper are affiliated with Tokyo Institute of Technology. The work was supported by CREST, Japan Science and Technology Agency.

####

About American Institute of Physics
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: apl.aip.org

For more information, please click here

Contacts:
Jason Socrates Bardi

240-535-4954

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Improvement of fluorescence intensity of nitrogen vacancy centers in self-formed diamond microstructures," is authored by S. Furuyama, K. Tahara, T. Iwasaki, M. Shimizu, J. Yaita, M. Kondo, T. Kodera, and M. Hatano. It will be published in the journal Applied Physics Letters on October 20, 2015 (DOI: 10.1063/1.4933103). After that date, it can be accessed at:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum Computing

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Optical computing/Photonic computing

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Quantum nanoscience

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project