Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Biomarker finder adjusts on the fly: Rice University scientists build better tool to find signs of disease

Rice University researchers (from left) Lucia Wu, David Zhang and J. Sherry Wang have developed a continuously tunable method to quantify biomarkers in DNA and RNA. Finding biomarkers is important for the detection of diseases and the design of therapies.
CREDIT: Jeff Fitlow/Rice University
Rice University researchers (from left) Lucia Wu, David Zhang and J. Sherry Wang have developed a continuously tunable method to quantify biomarkers in DNA and RNA. Finding biomarkers is important for the detection of diseases and the design of therapies.

CREDIT: Jeff Fitlow/Rice University

Abstract:
A Rice University laboratory has developed a continuously tunable method to find and quantify DNA and RNA biomarkers.

Biomarker finder adjusts on the fly: Rice University scientists build better tool to find signs of disease

Houston, TX | Posted on October 21st, 2015

Rice bioengineer David Zhang and his colleagues have developed a unique way to adjust their nucleic acid probe reagents on the fly and take a reliable count of target sequences.

The work is detailed in an open-access paper this week in Nature Methods.

The ability to identify DNA or RNA sequences, especially mutations, has become critically important for the detection of diseases and design of therapies to treat them. But finding a specific biomarker in a massive amount of genetic code is hard.

Zhang and his team at Rice's BioScience Research Collaborative have become specialists in finding such needles in haystacks. In previous work, the lab designed probes that find single-nucleotide mutations in DNA while using "competing" probes to bind to healthy sequences and effectively get them out of the way.

This time the lab is developing synthetic DNA "protectors" that mimic the target sequence and compete with the target in binding to the probes. By altering the stoichiometry, or the proportion of substances in chemical reactions, of these protectors, researchers can control the balance of the reactions so the fluorescent probes' brightness can be adjusted.

For example, Zhang said, there may be two biomarker sequences of interest, but the high expression of one would outshine the low expression of another. Because the unit brightness of each biomarker can be adjusted, the researchers' new method allows the simultaneous and accurate observation of many biomarkers.

"In principle, we should be able to tune indefinitely," he said. "But we'd be trading off time and labor and cost versus what people actually need. If we can get 90 percent of the value in two steps, it probably doesn't make sense to take five more steps for 95 percent."

Zhang, lead authors Lucia Wu and J. Sherry Wang and their colleagues have written software to help researchers design their own probes. The Web-based program allows researchers to cut and paste gene sequences and highlight areas of interest to generate probe designs. The program is free to use and available at http://nablab.rice.edu/nabtools/.

Probe design is complicated by the fact that researchers often look for many biomarkers at once, and that those biomarkers interact with each other, Zhang said. "In an age of advancing science and big data, we want to look at hundreds or thousands or millions of different DNA biomarker signatures.

"Researchers have to decide in advance whether to measure how sensitive the target sequences are to their probes, or how specific they will be when binding," he said. "Unfortunately, these two goals are mutually exclusive. If you improve the sensitivity, the specificity drops, and vice versa.

"What we've done is alter the sensitivity and specificity of different probes in a way that's independent and decoupled," he said. "We like to envision DNA as a plate of food, and our molecules as salt and pepper shakers: We change the flavor of the DNA probe by salting it with a little more stoichiometry or peppering it with a little more of the protector.

"That's a reasonable analogy for what we're doing: going in and changing the formulation, changing the stoichiometric ratios of things. That actually allows us to change the sensitivity and specificity of each individual probe."

In one of many successful tests, the lab designed molecules to detect mutation sequences in historic biopsy samples preserved in wax from cancer patients. One of the researchers' goals is to design noninvasive cancer diagnostics that detect DNA biomarkers in blood samples for early screening and early recurrence detection.

Zhang expects the method to find wide use. "We want to provide better, faster and cheaper answers for researchers and clinicians who are looking at hundreds or thousands of different mutations," he said. He and Wang have co-founded a startup company, Searna Technologies, to further develop and commercialize the technology and apply it to cancer detection.

###

Co-authors are Rice graduate students John Fang and Emily Reiser and postdoctoral research associate Alessandro Pinto; and Irena Pekker, Richard Boykin, Celine Ngouenet, Philippa Webster and Joseph Beechem of Nanostring Technologies in Seattle.

####

About Rice University

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,888 undergraduates and 2,610 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth

713-348-6327

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Nucleic Acid Bioengineering Lab:

Rice University Department of Bioengineering:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Cancer

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project