Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Novel algorithm simulates water evaporation at the nanoscale

Abstract:
We are all familiar with boiling a pot of water--flame from a stove heats the base of a metal pot, the metal transfers the heat to the water, and the temperature goes up and up until the water boils. Professor Shalabh Maroo and graduate student Sumith YD are looking closer -- much closer. They are looking at heat transfer in water at the nanoscale, where the heat from the pot's atoms transfers to the atoms that make up water.

Novel algorithm simulates water evaporation at the nanoscale

Syracuse. NY | Posted on October 19th, 2015

The evaporation of water that occurs when it meets a hot surface is understood in continuum theory and in experimentation. Before now, researchers were unable to study it at nanoscales in molecular simulation. YD and Maroo's algorithm has made that possible, and their paper, "Surface-Heating Algorithm for Water at Nanoscale," has garnished notable attention in the Journal of Physical Chemistry Letters.

Within their paper, the pair details their development of a new algorithm that simulates the evaporation of water at the molecular scale that matches theoretical, numerical, and real-world observations. In doing so, the team has provided a molecular dynamics tool that allows for the study of various heat transfer problems at the nanoscale, including understanding and utilizing passive liquid flows.

"By capturing realistic differential thermal gradients in water heated at the surface, our algorithm can be an incredibly valuable tool for studying a range of heating and cooling problems. It's also simple enough to be easily integrated into various molecular simulation software and user codes," describes Maroo.

This research is part of Maroo's CAREER award research, in which he is investigating the fundamental physics associated with nanoscale meniscus evaporation and passive liquid flow to remove large amounts of heat from small surfaces in very short amounts of time. This work aims to provide rapid and efficient cooling of next-generation computer chips and energy conversion devices.

####

For more information, please click here

Contacts:
Matthew Wheeler

315-443-4777

Copyright © Syracuse University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Additional information about Maroo's research group can be found on his lab's website:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project