Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientific breakthrough can lead to cheaper and environmentally friendly solar cells

Abstract:
The hope is to develop efficient and environmentally friendly solar energy applications. Solar energy is an inexhaustible resource that we currently only utilise to a very limited extent. Researchers around the world are therefore trying to find new and more efficient ways to use the energy in sunlight.

Scientific breakthrough can lead to cheaper and environmentally friendly solar cells

Lund, Sweden | Posted on October 14th, 2015

The technique the researchers in Lund are working on is solar cells consisting of a thin film of nanostructured titanium dioxide and a dye that captures solar energy. Today, the best solar cells of this type use dyes containing ruthenium metal - a very rare and expensive element.

"Many researchers have tried to replace ruthenium with iron, but without success. All previous attempts have resulted in molecules that convert light energy into heat instead of electrons, which is required for solar cells to generate electricity", says Villy Sundström, Professor of Chemical Physics at Lund University.

Researchers at the Chemistry Department in Lund, in collaboration with Uppsala University, have now successfully produced an iron-based dye that is capable of converting light into electrons with nearly 100 per cent efficiency.

"The advantage of using iron is that it is a common element in nature. It can provide inexpensive and environmentally friendly applications of solar energy in the future", says Kenneth Wärnmark, Professor of Organic Chemistry at Lund University.

By combining the experiments with advanced computer simulations, the researchers are able to understand in detail required design concepts for the iron molecules to work. This knowledge is now being used for further developing the iron-based dyes. More research is needed before the new solar cell dye can be used in practice, but there are high hopes.

"The results of the study suggest that solar cells based on these materials can be at least as effective as those of today that are based on ruthenium or other rare metals", says Villy Sundström.

The discovery could also advance research on solar fuels in which, like in photosynthesis of plants, water and carbon dioxide are turned into energy-rich molecules - solar fuel - with the help of sunlight.

"We envision that the new iron-based molecules could also drive the chemical reactions that create solar fuel", says Kenneth Wärnmark.

The researchers have worked on developing iron-based solar cell dyes for three years and are surprised by how quickly they found a dye that can capture sunlight as efficiently as this.

"Achieving success in research usually takes longer than what we hope for and believe", says Villy Sundström and continues: "For once, it was the opposite!".

The study, which has now been published in Nature Chemistry, is a collaboration between researchers from several divisions at Lund University, as well as researchers from Uppsala University.

###

Publication

Iron sensitizer converts light to electrons with 92 % yield. (Nature Chemistry, Published online 12 October 2015)

####

For more information, please click here

Contacts:
Villy Sundstrom

46-462-224-690

Copyright © Lund University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project