Home > Press > Could candle soot power electric vehicles? New research shows candle soot can power the lithium batteries in electric cars
![]() |
Abstract:
Burning a candle could be all it takes to make an inexpensive but powerful electric car battery, according to new research published in Electrochimica Acta. The research reveals that candle soot could be used to power the kind of lithium ion battery used in plug-in hybrid electric cars.
The authors of the study, from the Indian Institute of Technology in Hyderabad, India, say their discovery opens up the possibilities to use carbon in more powerful batteries, driving down the costs of portable power.
Lithium ion batteries power many devices, from smartphones and digital cameras all the way up to cars and even aircraft. The batteries work by having two electrically charged materials suspended in a liquid to produce a current. Carbon is used as one of those materials in smaller batteries, but for bigger, more powerful batteries - such as those used in electric cars - carbon is not suitable because of its structure, which cannot produce the required current density.
In the new study, Dr. Chandra Sharma and Dr. Manohar Kakunuri found that because of the shape and configuration of the tiny carbon nanoparticles, the carbon in candle soot is suitable for use in bigger batteries. What's more, because the soot could be produced quickly and easily, it is a scalable approach to making batteries.
"If you put a water droplet on candle soot it rolls off - that's an observation that's been made in the last few years. The material candle soot is made of, carbon, also has electric potential. So why not use it as an electrode?" asked Dr. Sharma, author of the study from the Indian Institute of Technology. "We looked into it and saw it also shows some exceptional electrochemical properties, so we decided to test it further."
When a candle burns, it gives off clouds of black soot made of carbon. The researchers looked at the soot collected from the tip of a candle flame and from the middle of the flame and compared the size, shape and structure of the carbon. The results showed that the burning process forms nanoparticles of carbon that are 30-40 nanometers across and are joined together in an interconnected network. They also found that the soot recovered from the tip of a candle flame, which burns at 1400?C, has fewer impurities like wax, making it perform better as an electrical conductor.
The researchers then analyzed the effectiveness of the soot as a conducting material to use in a battery. The effectiveness of batteries and materials used in batteries can be tested through a technique called cyclic charge-discharge (CCD). The rate of charge/discharge reflects how powerful the battery is; the higher the rate, the more powerful the battery; the results showed that the candle soot carbon performed best at higher rates.
The shape and size of the carbon nanoparticles, and the way they are joined together, means candle soot is a suitable material to use in electric car batteries. Not only is the technology efficient and cost-effective, it is also scalable. Dr. Sharma estimates that one hybrid car would need ten kilograms of carbon soot, which would be deposited in about an hour using candles.
"Generally we overlook the simpler things; candle soot is not new but we're only now looking at it as a potential source of carbon," said Dr. Sharma. "We're very excited about the results. This new approach is very easy and the costs involved are minimal - it would make battery production cheaper."
The researchers now plan to develop a candle soot battery to test the technology further. They are also planning to test hybrid materials that contain candle soot to see if they can make it an even better material for batteries.
###
Article details
"Candle Soot derived Fractal-like Carbon Nanoparticles Network as High-Rate Lithium Ion Battery Anode Material" by Manohar Kakunuri and Chandra S. Sharma (doi: 10.1016/j.electacta.2015.08.124). The article appears in Electrochimica Acta, Volume 180 (October 2015), published by Elsevier.
####
About Elsevier
Elsevier is a world-leading provider of information solutions that enhance the performance of science, health, and technology professionals, empowering them to make better decisions, deliver better care, and sometimes make groundbreaking discoveries that advance the boundaries of knowledge and human progress. Elsevier provides web-based, digital solutions -- among them ScienceDirect, Scopus, Elsevier Research Intelligence and ClinicalKey -- and publishes over 2,500 journals, including The Lancet and Cell, and more than 33,000 book titles, including a number of iconic reference works. Elsevier is part of RELX Group plc, a world-leading provider of information solutions for professional customers across industries.
Elsevier is a world-leading provider of information solutions that enhance the performance of science, health, and technology professionals, empowering them to make better decisions, deliver better care, and sometimes make groundbreaking discoveries that advance the boundaries of knowledge and human progress. Elsevier provides web-based, digital solutions -- among them ScienceDirect, Scopus, Elsevier Research Intelligence and ClinicalKey -- and publishes over 2,500 journals, including The Lancet and Cell, and more than 33,000 book titles, including a number of iconic reference works. Elsevier is part of RELX Group plc, a world-leading provider of information solutions for professional customers across industries.
For more information, please click here
Contacts:
Aileen Christensen
31-204-852-053
Copyright © Elsevier
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Automotive/Transportation
Leading the charge to better batteries February 28th, 2025
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Leading the charge to better batteries February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |