Home > Press > New Nanomaterials Taking Research to Mexico, Possibly into Space
Professors Linda Hirst, left, and Sayantani Ghosh |
Abstract:
Professors Linda Hirst and Sayantani Ghosh are combining liquid crystals with nanoparticles such as gold and quantum dots to come up with a new platform that could have applications in fields such as optics and medicine.
And the two new grants the School of Natural Sciences researchers have earned could help take their creations out of this world — literally.
A National Science Foundation grant of $410,000 will help Hirst and Ghosh study the fundamental physics behind the capsules that form when the two materials are combined.
“Usually, nanoparticles stick together and are hard to control,” Hirst said. “But we’ve attached molecules synthesized here with our collaborator, chemistry Professor Jason Hein, to help them assemble into shapes. That gives us much better control. It’s really a new process.”
The tiny capsules — actually thin, spherical shells — cannot be seen with the naked eye. They form after heated liquid crystals infused with the nanoparticles begin to cool.
“I’ve never seen capsules that are entirely or highly concentrated with nanoparticles before,” said Hirst, who is also affiliated with the Health Sciences Research Institute. “Liquid crystals and nanoparticles — we don’t often think of them going together.”
The capsules can contain solutions and be broken open with light that heats them. What researchers choose to put inside the capsules can vary, and could include medicine.
Ghosh and Hirst also received a $25,000 grant from the University of California Institute for Mexico and the United States (UC MEXUS), part of the UC’s efforts to partner with, learn from and learn about Mexico and Latin America. They will work with a researcher at the Universidad Nacional Autónoma de México (National Autonomous University of Mexico) to develop highly detailed models of the new capsules so the researchers can fully understand them.
“We know that they form these shells, but we need to have a good understanding of how and why, so we can make the best use of them,” Ghosh said.
Ghosh, who also works with the new NASA-funded Merced Nanomaterials Center for Energy and Sensing (MACES), envisions tying the two projects together to possibly deliver a way for NASA to prepare astronauts for space flights by injecting them just under the skin with the shells containing treatments for various issues. If a health problem arose, an astronaut could use a handheld light to heat the gold particles in the nano-shell, which would break them open and release medication.
“It could be good for anyone in remote locations,” she said.
Back here on Earth, she said, the capsules themselves could be injected into malignant tumors and heated, potentially killing cancer cells and also delivering medication once they break open.
Makiko Quint, one of the graduate students working with Ghosh and Hirst, has initiated a collaboration with Stanford University Professor Kerwyn Huang to further develop some of the bioengineering applications.
Hirst said she, Ghosh and student researchers will also work on forming the capsules with quantum dots, which can change the wavelength of light. They want to come up with a way to form the shells into flat sheets that could be applied as a coating.
A capsule-coating could improve the quality of television pictures, could be used in solar collection or in any application where lights get hot. They are stable up to 150 degrees.
The collaboration has so far resulted in several papers, including some published in the journal Soft Matter, and will likely result in many more, the researchers agreed.
The UC MEXUS grant will also allow an exchange of researchers between the two labs. Some students from the University of Mexico City, and their professor, Orlando Guzman, will visit UC Merced to be able to see the materials they are modeling. Graduate and undergraduate students from UC Merced will also travel to Mexico to learn how the researchers there are preparing the models.
####
For more information, please click here
Contacts:
Lorena Anderson
Assistant News Director
209-228-4406
Copyright © University of California, Merced
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Aerospace/Space
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024
Bridging light and electrons January 12th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Quantum Dots/Rods
A new kind of magnetism November 17th, 2023
IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||