Home > Press > Observing nano-bio interactions in real time: Technique developed by NUS-led team provides more precise understanding of how proteins in the bloodstream bind to nanoparticles, paving the way for better design of nanomedicines
Abstract:
Researchers at the National University of Singapore (NUS) have developed a technique to observe, in real time, how individual blood components interact and modify advanced nanoparticle therapeutics. The method, developed by an interdisciplinary team consisting clinician-scientist Assistant Professor Chester Lee Drum of the Department of Medicine at the NUS Yong Loo Lin School of Medicine, Professor T. Venky Venkatesan, Director of NUS Nanoscience and Nanotechnology Institute, and Assistant Professor James Kah of the Department of Biomedical Engineering at the NUS Faculty of Engineering, helps guide the design of future nanoparticles to interact in concert with human blood components, thus avoiding unwanted side effects.
This research was published online in the journal Small, a top multidisciplinary journal covering research at the nano- and microscale, on 10 September 2015.
Challenges of using nanoparticles in diagnostic and drug delivery systems
With their small size and multiple functionalities, nanoparticles have attracted intense attention as both diagnostic and drug delivery systems. However, within minutes of being delivered into the bloodstream, nanoparticles are covered with a shell of serum proteins, also known as a protein ‘corona’.
“The binding of serum proteins can profoundly change the behaviour of nanoparticles, at times leading to rapid clearance by the body and a diminished clinical outcome,” said Asst Prof Kah.
Existing methods such as mass spectroscopy and diffusional radius estimation, although useful for studying important nanoparticle parameters, are unable to provide detailed, real-time binding kinetics.
Novel method to understand nano-bio interactions
The NUS team, together with external collaborator Professor Bo Liedberg from the Nanyang Technological University, showed highly reproducible kinetics for the binding between gold nanoparticles and the four most common serum proteins: human serum albumin, fibrinogen, apolipoprotein A-1, and polyclonal IgG.
“What was remarkable about this project was the initiative taken by Abhijeet Patra, my graduate student from NUS Graduate School for Integrative Sciences and Engineering, in conceptualising the problem, and bringing together the various teams in NUS and beyond to make this a successful programme,” said Prof Venkatesan. “The key development is the use of a new technique using surface plasmon resonance (SPR) technology to measure the protein corona formed when common proteins in the bloodstream bind to nanoparticles,” he added.
The researchers first immobilised the gold nanoparticles to the surface of a SPR sensor chip with a linker molecule. The chip was specially modified with an alginate polymer layer which both provided a negative charge and active sites for ligand immobilisation, and prevented non-specific binding. Using a 6 x 6 microfluidic channel array, they studied up to 36 nanoparticle-protein interactions in a single experiment, running test samples alongside experimental controls.
“Reproducibility and reliability have been a bottleneck in the studies of protein coronas,” said Mr Abhijeet Patra. “The quality and reliability of the data depends most importantly upon the design of good control experiments. Our multiplexed SPR setup was therefore key to ensuring the reliability of our data.”
Testing different concentrations of each of the four proteins, the team found that apolipoprotein A-1 had the highest binding affinity for the gold nanoparticle surface, with an association constant almost 100 times that of the lowest affinity protein, polyclonal IgG.
“Our results show that the rate of association, rather than dissociation, is the main determinant of binding with the tested blood components,” said Asst Prof Drum.
The multiplex SPR system was also used to study the effect of modification with polyethylene (PEG), a synthetic polymer commonly used in nanoparticle formulations to prevent protein accumulation. The researchers found that shorter PEG chains (2-10 kilodaltons) are about three to four times more effective than longer PEG chains (20-30 kilodaltons) at preventing corona formation.
“The modular nature of our protocol allows us to study any nanoparticle which can be chemically tethered to the sensing surface,” explained Asst Prof Drum. “Using our technique, we can quickly evaluate a series of nanoparticle-based drug formulations before conducting in vivo studies, thereby resulting in savings in time and money and a reduction of in vivo testing,” he added.
The researchers plan to use the technology to quantitatively study protein corona formation for a variety of nanoparticle formulations, and rationally design nanomedicines for applications in cardiovascular diseases and cancer.
####
About National University of Singapore
A leading global university centred in Asia, the National University of Singapore (NUS) is Singapore’s flagship university, which offers a global approach to education and research, with a focus on Asian perspectives and expertise.
NUS has 16 faculties and schools across three campuses. Its transformative education includes a broad-based curriculum underscored by multi-disciplinary courses and cross-faculty enrichment. Over 38,000 students from 100 countries enrich the community with their diverse social and cultural perspectives.
NUS has three Research Centres of Excellence (RCE) and 26 university-level research institutes and centres. It is also a partner in Singapore’s fifth RCE. NUS shares a close affiliation with 16 national-level research institutes and centres. Research activities are strategic and robust, and NUS is well-known for its research strengths in engineering, life sciences and biomedicine, social sciences and natural sciences. It also strives to create a supportive and innovative environment to promote creative enterprise within its community.
This year, NUS celebrates its 110th year of founding together with Singapore’s 50th year of independence. As the island’s first higher education institution established by the local community, NUS prides itself in nurturing generations of leaders and luminaries in Singapore and Asia.
For more information on NUS, please visit www.nus.edu.sg. Details on NUS’ 110th Anniversary celebrations are available at nus110.sg.
For more information, please click here
Contacts:
Carolyn FONG
Senior Manager, Media Relations
Office of Corporate Relations
National University of Singapore
DID: (65) 6516 5399
Copyright © National University of Singapore
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||