Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > An even more versatile optical chip: An INRS team is generating photon pairs with complex quantum states on a chip compatible with electronic systems

Abstract:
Telecommunication networks will soon reach the physical limits of current technology and in order to overcome the current bottleneck, they will have to exploit the quantum properties of light. Roberto Morandotti and his INRS team are paving the way to this technological revolution by removing the technical barriers of quantum photonics through the use of their optical chips. Recently they directly generated cross-polarized (orthogonal) photon pairs on a chip, a first in quantum optics. Polarization will now be among the controllable parameters for harnessing light in a host of applications. The new device developed at INRS will help create low cost, high performance, energy efficient technologies.

An even more versatile optical chip: An INRS team is generating photon pairs with complex quantum states on a chip compatible with electronic systems

Québec, Canada | Posted on September 14th, 2015

Integrating optical components on chips compatible with electronic circuits is a key requirement for future telecommunication networks. Dr. Morandotti's team is quickly advancing this powerful technology. They have recently designed a stable ultrafast laser based on an integrated microring resonator. They are now working on maximizing the control of photon and light beam properties to increase the functions and applications of their innovations.

As mentioned, using the polarization of light in this context to its full potential has not been possible so far. Dr. Morandotti has achieved very promising results by using the nonlinear optical effect called four-wave mixing. The experimental device devised by Dr. Morandotti's team produces photon pairs with orthogonal polarization while eliminating photons with undesirable frequencies. The wide variety of complex quantum states that can be generated by this device has the potential to offer a tremendous advantage for optical communication and applications such as signal processing and spectroscopy.

PRESTIGIOUS PUBLICATION

The results of this research appeared in the prestigious peer-reviewed journal Nature Communications and are now freely available. The article, entitled "Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip," was made possible thanks to the financial support of the Natural Sciences and Engineering Research Council of Canada, Australian Research Council Centres of Excellence, Fonds de recherche du Québec - Nature et technologie, and the individual research grant program (Marie Sklodowska-Curie Actions) of the seventh European Union framework program.

###

Funders: Natural Sciences and Engineering Research Council of Canada, Australian Research Council Centres of Excellence, Fonds de recherche du Québec - Nature et technologie, and the individual research grant program (Marie Sklodowska-Curie Actions) of the seventh European Union framework program.

####

About INRS
Institut national de recherche scientifique (INRS) is a graduate-level research and training university and ranks first in Canada for research intensity (average grant funding per faculty member). INRS brings together some 150 professors and close to 700 students and postdoctoral fellows at its four centres in Montreal, Quebec City, Laval, and Varennes. Its basic research is essential to the advancement of science in Quebec and internationally even as it plays a key role in the development of concrete solutions to the problems faced by our society.

For more information, please click here

Contacts:
Stephanie Thibault

514-499-6612

Dr. Roberto Morandotti

Copyright © INRS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Optical computing/Photonic computing

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Photonics/Optics/Lasers

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Quantum nanoscience

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project