Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel

Photo: Shutterstock.
Photo: Shutterstock.

Abstract:
Refined by nature over a billion years, photosynthesis has given life to the planet, providing an environment suitable for the smallest, most primitive organism all the way to our own species.

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel

Argonne, IL | Posted on September 3rd, 2015

While scientists have been studying and mimicking the natural phenomenon in the laboratory for years, understanding how to replicate the chemical process behind it has largely remained a mystery -- until now.

Recent experiments at the U.S. Department of Energy's Argonne National Laboratory have afforded researchers a greater understanding of how to manipulate photosynthesis, putting humankind one step closer to harvesting "solar fuel," a clean energy source that could one day help replace coal and natural gas.

Lisa M. Utschig, a bioinorganic chemist at Argonne for 20 years, said storing solar energy in chemical bonds such as those found in hydrogen can provide a robust and renewable energy source. Burning hydrogen as fuel creates no pollutants, making it much less harmful to the environment than common fossil fuel sources.

"We are taking sunlight, which is abundant, and we are using water to make a fuel," said Utschig, who oversaw the project. "It's pretty remarkable." Unlike the energy derived from solar panels, which must be used quickly, hydrogen, a solar fuel, can be stored.

Sarah Soltau, a postdoctoral fellow at Argonne who conducted much of the research, said "the key finding of Argonne's most recent research is that we were able to actually watch the processes of electrons going from a light-absorbing molecule to a catalyst that produces solar fuel. This piece of knowledge will help us develop a system to work more efficiently than the one we can create now, and, years on, may allow us to replace oil and gas."

Argonne researchers attached a protein from spinach to both a light-absorbing molecule (called a photosensitizer) and to a hydrogen-producing catalyst. The protein helped stabilize both the catalyst and photosensitizer, allowing scientists to observe direct electron flow between the two for the first time.

Researchers used transient optical spectroscopy, a method for detecting very fast changes in the light absorption of a molecule when illuminated with a laser pulse, to observe changes in the color of a compound as it undergoes chemical reactions. They also employed electron paramagnetic resonance, another form of spectroscopy, to study where electrons move inside a molecule.

"We don't just see the result, the hydrogen," Utschig said. "We are peering into this system. We are able to really see how it works and what the essential parts are. Once you know that, the next time you try and design something, you can make it better because you understand it."

Argonne has been studying photosynthesis since the 1960s but this particular experiment has been pursued for about a year. Soltau said scientists may be several years from using these techniques to generate storable solar fuels to power cars or households, but that this could be made possible once researchers learn ways to make the process more efficient.

"We need to look at ways to make solar fuel production last longer," she said. "Right now, the systems don't have the stability necessary to last weeks or months."

###

The scientists' findings were published in a paper titled "Aqueous light driven hydrogen production by a Ru-ferredoxin-Co biohybrid" in the journal Chemical Communications.

This research was funded by the U.S. Department of Energy's Office of Science, Basic Energy Sciences.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science. For more, visit http://www.anl.gov.

The Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Christopher Kramer

630-252-5580

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project