Home > Press > Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel
![]() |
Photo: Shutterstock. |
Abstract:
Refined by nature over a billion years, photosynthesis has given life to the planet, providing an environment suitable for the smallest, most primitive organism all the way to our own species.
While scientists have been studying and mimicking the natural phenomenon in the laboratory for years, understanding how to replicate the chemical process behind it has largely remained a mystery -- until now.
Recent experiments at the U.S. Department of Energy's Argonne National Laboratory have afforded researchers a greater understanding of how to manipulate photosynthesis, putting humankind one step closer to harvesting "solar fuel," a clean energy source that could one day help replace coal and natural gas.
Lisa M. Utschig, a bioinorganic chemist at Argonne for 20 years, said storing solar energy in chemical bonds such as those found in hydrogen can provide a robust and renewable energy source. Burning hydrogen as fuel creates no pollutants, making it much less harmful to the environment than common fossil fuel sources.
"We are taking sunlight, which is abundant, and we are using water to make a fuel," said Utschig, who oversaw the project. "It's pretty remarkable." Unlike the energy derived from solar panels, which must be used quickly, hydrogen, a solar fuel, can be stored.
Sarah Soltau, a postdoctoral fellow at Argonne who conducted much of the research, said "the key finding of Argonne's most recent research is that we were able to actually watch the processes of electrons going from a light-absorbing molecule to a catalyst that produces solar fuel. This piece of knowledge will help us develop a system to work more efficiently than the one we can create now, and, years on, may allow us to replace oil and gas."
Argonne researchers attached a protein from spinach to both a light-absorbing molecule (called a photosensitizer) and to a hydrogen-producing catalyst. The protein helped stabilize both the catalyst and photosensitizer, allowing scientists to observe direct electron flow between the two for the first time.
Researchers used transient optical spectroscopy, a method for detecting very fast changes in the light absorption of a molecule when illuminated with a laser pulse, to observe changes in the color of a compound as it undergoes chemical reactions. They also employed electron paramagnetic resonance, another form of spectroscopy, to study where electrons move inside a molecule.
"We don't just see the result, the hydrogen," Utschig said. "We are peering into this system. We are able to really see how it works and what the essential parts are. Once you know that, the next time you try and design something, you can make it better because you understand it."
Argonne has been studying photosynthesis since the 1960s but this particular experiment has been pursued for about a year. Soltau said scientists may be several years from using these techniques to generate storable solar fuels to power cars or households, but that this could be made possible once researchers learn ways to make the process more efficient.
"We need to look at ways to make solar fuel production last longer," she said. "Right now, the systems don't have the stability necessary to last weeks or months."
###
The scientists' findings were published in a paper titled "Aqueous light driven hydrogen production by a Ru-ferredoxin-Co biohybrid" in the journal Chemical Communications.
This research was funded by the U.S. Department of Energy's Office of Science, Basic Energy Sciences.
####
About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science. For more, visit http://www.anl.gov.
The Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.
For more information, please click here
Contacts:
Christopher Kramer
630-252-5580
Copyright © Argonne National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Industrial
Quantum interference in molecule-surface collisions February 28th, 2025
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |