Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more

Abstract:
Consumers aren't embracing electric cars and trucks, partly due to the dearth of charging stations required to keep them moving. Even the conservation-minded are hesitant to go electric in some states because, studies show, if fossil fuels generate the electricity, the car is no greener than one powered with an efficient gasoline.

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more

Cleveland, OH | Posted on August 27th, 2015

Charging cars by solar cell would appear to be the answer. But most cells fail to meet the power requirements needed to directly charge lithium-ion batteries used in today's all-electric and plug-in hybrid electric vehicles.

Researchers at Case Western Reserve University, however, have wired four perovskite solar cells in series to enhance the voltage and directly photo-charged lithium batteries with 7.8 percent efficiency--the most efficient reported to date, the researchers believe.

The research, published in the Aug. 27 issue of Nature Communications, holds promise for cleaner transportation, home power sources and more.

"We found the right match between the solar cell and battery," said Liming Dai, the Kent Hale Smith Professor of macromolecular science and engineering and leader of the research. "Others have used polymer solar cells to charge lithium batteries, but not with this efficiency."

In fact, the researchers say their overall photoelectric conversion and storage outperformed all other reported couplings of a photo-charging component with lithium-ion batteries, flow batteries or super-capacitors.

Perovskite solar cells have active materials with a crystalline structure identical to the mineral perovskite and are considered a promising new design for capturing solar energy. Compared to silicon-based cells, they convert a broader spectrum of sunlight into electricity.

In short order, they have matched the energy conversion of silicon cells, and researchers around the world are pursuing further advances.

Dai's lab made multilayer solar cells, which increases their energy density, performance and stability. Testing showed that, as desired, the three layers convert into a single perovskite film.

By wiring four lab-sized cells, about 0.1 centimeter square each, in series, the researchers further increased the open circuit voltage. The solar-to-electric power conversion efficiency was 12.65 percent.

To charge button-sized lithium-ion batteries, they used a lithium-ion-phosphate cathode and a lithium-titanium-oxide anode. The photoelectric conversion and storage efficiency was 7.8 percent. Through 10 photo-charge/galvanostatic (steady current) discharge cycles lasting nearly 18 hours, the technology maintained almost identical discharge/charge curves over all cycles, showing high cycling stability and compatibility of the components.

"We envision, in the not too distant future, this is a system that you could have at home to refuel your car and, eventually, because perovskite solar cells can be made as a flexible film, they would be on the car itself," said Jiantie Xu, who, with Yonghua Chen, is an equally contributing first author of the study. Both are macromolecular science and engineering research associates in Case School of Engineering.

The researchers are developing small-scale prototypes and working to further improve the perovskite cell's stability and optimize the system.

####

For more information, please click here

Contacts:
Kevin Mayhood

216-534-7183

Copyright © Case Western Reserve University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Automotive/Transportation

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Solar/Photovoltaic

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project