Home > Press > Molecular trick alters rules of attraction for non-magnetic metals
Abstract:
Scientists have demonstrated for the first time how to generate magnetism in metals that aren't naturally magnetic, which could end our reliance on some rare and toxic elements currently used.
In a study led by the University of Leeds and published today in the journal Nature, researchers detail a way of altering the quantum interactions of matter in order to "fiddle the numbers" in a mathematical equation that determines whether elements are magnetic, called the Stoner Criterion.
Co-lead author Fatma Al Ma'Mari, from the School of Physics & Astronomy at the University of Leeds, said: "Being able to generate magnetism in materials that are not naturally magnetic opens new paths to devices that use abundant and hazardless elements, such as carbon and copper."
Magnets are used in many industrial and technological applications, including power generation in wind turbines, memory storage in hard disks and in medical imaging.
"Future technologies, such as quantum computers, will require a new breed of magnets with additional properties to increase storage and processing capabilities. Our research is a step towards creating such 'magnetic metamaterials' that can fulfil this need," said Al Ma'Mari.
Yet, despite their widespread use, at room temperature only three elements are ferromagnetic - meaning they have high susceptibility to becoming and remaining magnetic in the absence of a field, as opposed to paramagnetic substances, which are only weakly attracted to the poles of a magnet and do not retain any magnetism on their own. These ferromagnetic elements are the metals iron, cobalt and nickel.
Co-lead author Tim Moorsom, also from the University's School of Physics & Astronomy, said: "Having such a small variety of magnetic materials limits our ability to tailor magnetic systems to the needs of applications without using very rare or toxic materials. Having to build devices with only the three magnetic metals naturally available to us is rather like trying to build a skyscraper using only wrought iron. Why not add a little carbon and make steel?"
The condition that determines whether a substance is ferromagnetic is called the Stoner Criterion. It explains why iron is ferromagnetic while manganese is not, even though the elements are found side-by-side in the periodic table.
The Stoner Criterion was formulated by Professor Edmund Clifton Stoner, a theoretical physicist who worked at the University of Leeds from the 1930s until the 60s. At its heart, it analyses the distribution of electrons in an atom and the strength of the interaction between them.
It states that for an element to be ferromagnetic, when you multiply the number of different states that electrons are allowed to occupy in orbitals around the nucleus of an atom - called the Density of States (DOS) - by something called the 'exchange interaction', the result must be greater than one.
The exchange interaction refers to the magnetic interaction between electrons within an atom, which is determined by the orientation of each electron's magnetic 'spin' - a quantum mechanical property to describe the intrinsic angular momentum carried by elementary particles, with only two options, either 'up' or 'down'.
In the new study, the researchers have shown how to change the exchange interaction and DOS in non-magnetic materials by removing some electrons using an interface coated with a thin layer of the carbon molecule C60, which is also called a 'buckyball'.
The movement of electrons between the metal and the molecules allows the non-magnetic material to overcome the Stoner Criterion.
Dr Oscar Cespedes, principal investigator of the project, also from the University's School of Physics & Astronomy, said: "We and other researchers had noticed that creating a molecular interface changed how magnets behave. For us, the next step was to test if molecules could also be used to bring magnetic ordering into non-magnetic metals."
The researchers say that the study has successfully demonstrated the technique, but that further work is needed to make these synthetic magnets stronger.
"Currently, you wouldn't be able to stick one of these magnets to your fridge. But we are confident that applying the technique to the right combination of elements will yield a new form of designer magnets for current and future technologies," said Dr Cespedes.
###
Further information
The research was funded by the Engineering and Physical Sciences Research Council (EPSRC)
The research paper, 'Beating the Stoner Criterion Using Molecular Interfaces', is published in the journal Nature.
####
For more information, please click here
Contacts:
Gareth Dant
44-113-343-4031
Copyright © University of Leeds
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Memory Technology
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Industrial
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022
Quantum nanoscience
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||