Home > Press > Stretching the limits on conducting wires
![]() |
Abstract:
In the race to produce highly stretchable conductors, researchers have developed a new technique that aligns sheets of layered carbon nanotubes along stretched rubber cores, creating an extremely flexible conductive fiber.
From pacemaker leads to flexible displays and batteries, there is a growing need for fibers that don't lose their conductivity upon repeated stretching, twisting or flexing. The challenge has been to create a conductive material that is highly elastic, but that maintains a high level of conductivity when distorted - which is often not the case for existing materials that use variations of nanofibers, graphene, fiber and rubber. Liu and colleagues dramatically improve upon these other materials by stretching rubber fiber cores to roughly 1400%, and then aligning a sheath of carbon nanotubes in parallel to the strained core. Upon relaxation of the core, the nanotube sheath will buckle but will not break. This technique offers an impressive stretch-to-conductivity ratio, where there is less than a 5% decrease in electrical conductivity when the material is stretched by 1000%. The team has already taken this technique one step further by creating a more complicated combination of materials that uses a second layer of rubber. This allows for a high degree of twist within the combined materials, which could be used to control movement in artificial muscles. By creating significantly more efficient materials, this research could have a substantial impact on future medical devices, optical elements, and robotics. A Perspective by Tushar Ghosh provides more insights about this new technique.
###
Article #11: "Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles," by Z. Liu; S. Fang; F.A. Moura; N. Jiang; J. Di; X. Lepró; C.S. Haines; R. Zhang; X. Wang; M.D. Lima; D. Qian; H. Lu; R.H. Baughman at University of Texas at Dallas in Richardson, TX; Z. Liu; J. Ding; N. Yuan; R. Wang; W. Lv; C. Dong; M. Chen; Q. Yin at Changzhou University in Changzhou, China; Z. Liu; S. Fang; N. Jiang; N. Yuan; S. Yin; D.W. Lee; R. Wang; H. Wang; W. Lv; C. Dong; R. Zhang; M. Chen; Q. Yin; Y. Chong; R.H. Baughman at Jiangnan Graphene Research Institute in Changzhou, China; F.A. Moura; D.S. Galvão at State University of Campinas in Campinas, Brazil; M. Zhang at Florida State University in Tallahassee, FL; S. Yin; H. Wang; R. Zhang at Tianjin University of Technology in Tianjin, China; R. Zhang at Northwestern Polytechnical University in Xi'an, China; R. Ovalle-Robles at Lintec of America, Nano-Science and Technology Center in Richardson, TX; J. Ding at Jiangsu University in Zhenjiang, China.
####
For more information, please click here
Contacts:
Natasha Pinol
202-326-6440
Copyright © AAAS
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Flexible Electronics
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Display technology/LEDs/SS Lighting/OLEDs
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Leading the charge to better batteries February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024
Research partnerships
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |