Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers find nanowires have unusually pronounced 'anelastic' properties

A time-lapse series of images of a nanowire exhibiting anelasticity. At top left, the image shows a nanowire bent almost in half, and then 5 seconds after release (middle left), 10 seconds (bottom left), 60 seconds (top right), 10 minutes (middle right), and 20 minutes (bottom right) after release. Image credit: Yong Zhu.
A time-lapse series of images of a nanowire exhibiting anelasticity. At top left, the image shows a nanowire bent almost in half, and then 5 seconds after release (middle left), 10 seconds (bottom left), 60 seconds (top right), 10 minutes (middle right), and 20 minutes (bottom right) after release.

Image credit: Yong Zhu.

Abstract:
“Large Anelasticity and Associated Energy Dissipation in Single-Crystalline Nanowires”

Authors: Guangming Cheng, Qingquan Qin, Jing Li, Feng Xu, Elizabeth C. Dickey, and Yong Zhu, North Carolina State University; Chunyang Miao, Brown University and Nanjing University of Aeronautics and Astronautics; Hamed Haftbaradaran and Huajian Gao, Brown University

Published: July 13, Nature Nanotechnology

DOI: 10.1038/nnano.2015.141

Abstract: Anelastic materials exhibit gradual full recovery of deformation once a load is removed, leading to efficient dissipation of internal mechanical energy. As a consequence, anelastic materials are being investigated for energy damping applications. At macroscopic scale, however, anelaticity is usually very small or negligible, especially in single-crystalline materials. Here we show that single-crystalline ZnO and p-doped Si nanowires (NWs) can exhibit anelastic behaviour that is up to four orders of magnitude larger than the largest anelasticity observed in bulk materials, with a recovery time-scale in the order of minutes. In-situ scanning electron microscope (SEM) tests of individual NWs showed that, upon removal of the bending load and instantaneous recovery of the elastic strain, a significant portion of the total strain gradually recovers with time. We attribute the observed large anelasticity to stress-gradient-induced migration of point defects, as supported by electron energy loss spectroscopy (EELS) measurements and also by the fact that no anelastic behaviour could be observed under tension. We model this behaviour through a theoretical framework by point defect diffusion under high initial strain gradient and short diffusion distance, expanding the classic Gorsky theory. Finally, we show that ZnO single-crystalline NWs exhibit a damping merit index of 1.13, suggesting crystalline NWs with point defects as potential candidates for efficient energy damping materials.

Researchers find nanowires have unusually pronounced 'anelastic' properties

Raleigh, NC | Posted on July 13th, 2015

Researchers from North Carolina State University and Brown University have found that nanoscale wires (nanowires) made of common semiconductor materials have a pronounced anelasticity - meaning that the wires, when bent, return slowly to their original shape rather than snapping back quickly.

"All materials have some degree of anelasticity, but it is usually negligible at the macroscopic scale," says Yong Zhu, an associate professor of mechanical and aerospace engineering at NC State and corresponding author of a paper describing the work. "Because nanowires are so small, the anelasticity is significant and easily observed -- although it was a total surprise when we first discovered the anelasticity in nanowires." The anelasticity was discovered when Zhu and his students were studying the buckling behavior of nanowires.

"Anelasticity is a fundamental mechanical property of nanowires, and we need to understand these sort of mechanical behaviors if we want to incorporate nanowires into electronics or other devices," says Elizabeth Dickey, a professor of materials science and engineering at NC State and co-author of the paper. Nanowires hold promise for use in a variety of applications, including flexible, stretchable and wearable electronic devices.

The researchers worked with both zinc oxide and silicon nanowires, and found that - when bent - the nanowires would return more than 80 percent of the way to their original shape instantaneously, but return the rest of the way (up to 20 percent) slowly.

"In nanowires that are approximately 50 nanometers in diameter, it can take 20 or 30 minutes for them to recover that last 20 percent of their original shape," says Guangming Cheng, a Ph.D. student in Zhu's lab and the first author for the paper.

The work was done using tools developed in Zhu's group that enabled the team to conduct experiments on nanowires while they were in a scanning electron microscope. Additional analysis was done using a Titan aberration-corrected scanning transmission electron microscope in NC State's Analytical Instrumentation Facility.

When any material is bent, the bonds between atoms are stretched or compressed to accommodate the bending, but in nanoscale materials there is time for the atoms to also move, or diffuse, from the compressed area to the stretched area in the material. If you think of the bent nanowire as an arch, the atoms are moving from the inside of the arch to the outside. When the tension in the bent wire is released, the atoms that simply moved closer or further apart snap back immediately; this is what we call elasticity. But the atoms that moved out of position altogether take time to return to their original sites. That time lag is a characteristic of anelasticity.

"This phenomenon is pronounced in nanowires. For instance, zinc oxide nanowires exhibited anelastic behavior that is up to four orders of magnitude larger than the largest anelasticity observed in bulk materials, with a recovery time-scale in the order of minutes," says Huajian Gao, a professor at Brown University and co-corresponding author of the paper. Detailed modeling by Gao's group indicates that the pronounced anelasticity in nanowires is because it is much easier for atoms to move through nanoscale materials than through bulk materials. And the atoms don't have to travel as far. In addition, nanowires can be bent much further than thicker wires without becoming permanently deformed or breaking.

"A reviewer commented that this is a new important page in the book on mechanics of nanostructures, which was very flattering to hear," Zhu says. The team plans to explore whether this pronounced anelasticity is common across nanoscale materials and structures. They also want to evaluate how this characteristic may affect other properties, such as electrical conductivity and thermal transport.

###

The work was done with funding from the National Science Foundation.

####

For more information, please click here

Contacts:
Matt Shipman

919-515-6386

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project