Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A cool way to form 2-D conducting polymers using ice: POSTECH scientists develop breakthrough technique to easily optimize electrical properties of Polyaniline nanosheets to an unprecedented level in an environmental-friendly and inexpensive way

Abstract:
A piece of deep frozen ice and electronic gadgets may seem to have little connection (except that they are both 'cool' to have on you), but ice could now play a role in opening a new era in the electronic industry where conducting polymers, simply put plastics with electrical properties, are in great demand for practical applications.

A cool way to form 2-D conducting polymers using ice: POSTECH scientists develop breakthrough technique to easily optimize electrical properties of Polyaniline nanosheets to an unprecedented level in an environmental-friendly and inexpensive way

South Korea | Posted on July 7th, 2015

Chemists at Pohang University of Science and Technology (POSTECH), Korea, have discovered an innovative method to form two-dimensional polyaniline (PANI) nanosheets using ice as a hard template. The product, called PANI-ICE, is reported to have distinctly outstanding electrical properties of low resistivity and high conductivity. PANI-ICE nanosheets show high electronic current flows twice as high as that of graphene, widely known as a next generation dream material, and over 40 times higher conductivity of PANI materials produced by existing established synthetic procedures.

Among various conducting polymers, PANI has long been a promising candidate for practical applications, in particular for microelectronics and battery electrodes, due to its relatively facile chemical synthesis and easy doping process at a low financial and environmental cost compared to other materials. As PANI's electrical properties are known to largely depend on its structure, previous studies have focused on the successful fabrication of two-dimensional PANI nanosheets using graphene oxide (GO) as a hard template. Despite improved electrical properties, however, the high cost, complexity of synthetic procedures, and unreliability of electrical properties over a large area are pointed out as the downside of PANI-GO composite nanosheets. Difficulties in removing the graphene oxide template also hinder versatile formation of the products.

Dr. Moon Jeong Park, a professor of the Department of Chemistry at POSTECH, and her two doctoral students, Il Young Choi and Joungphil Lee, have recently presented an innovative method that effectively overcomes the disadvantages of existing approaches. Selected as a "Highly Important Paper" of Angewandte Chemie, an internationally acclaimed peer-reviewed journal, Park et al.'s study is drawing much attention.

Park et al. fabricate PANI nanosheets on a smooth surface of deep frozen ice, causing preferential vertical growth and molecular orientation of PANI that significantly enhances its electrical properties. The superior conductivity of PANI-ICE, in particular, outperforms that of any other existing PANI ever reported. Moreover, the fabricated nanosheets can be easily transferred to various types of substrates as they float off on the surface of an ice template. It is also noteworthy that nanosheets can be patterned into any shape when using prearranged masks.

By simply introducing an easily removable, environment-friendly ice template, Park et al. successfully tackled a major challenge in the commercialization of conducting polymers, which is to improve both electrical properties and processability. What is more impressive about Park et al.'s original approach is that the synthesis of a large area only takes a few minutes and allows the production of one square meter of PANI-ICE nanosheet at a cost lower than $8 (USD).

"We believe that these unique, unprecedented advantages of PANI-ICE can expedite the eventual convenient and inexpensive application of conducting polymers in versatile electronic devices," said Park, the leader of study. Park et al. next plan to experiment on small pitch sizes of the nanosheets and further develop their research on the applications for electrodes in various electronic devices such as actuators.

###

This work was supported by the Samsung Research Funding Center of Samsung Electronics.

####

Contacts:
Ms. YunMee Jung

82-054-279-2417

Copyright © Pohang University of Science and Technology (POSTECH)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Appointments/Promotions/New hires/Resignations/Deaths

The National Space Society Mourns the Passing of Robert Krone, Founder of the Kepler Space Institute: Krone's Visionary and Humanistic Approach to the Study of Space Communities and Settlement Was Unique September 22nd, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

JEOL USA Welcomes New Managing Director, Hidetaka Sawada April 19th, 2021

The National Space Society Remembers Ben Bova : NSS Mourns the Loss of a Visionary NSS Leader December 2nd, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project