Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Surfing a wake of light: Researchers observe and control light wakes for the first time

This is an artistic rendition of the superluminal running wave of charge that excites the surface plasmon wakes.
CREDIT: Daniel Wintz, Patrice Genevet, and Antonio Ambrosio.
This is an artistic rendition of the superluminal running wave of charge that excites the surface plasmon wakes.

CREDIT: Daniel Wintz, Patrice Genevet, and Antonio Ambrosio.

Abstract:
When a duck paddles across a pond or a supersonic plane flies through the sky, it leaves a wake in its path. Wakes occur whenever something is traveling through a medium faster than the waves it creates -- in the duck's case water waves, in the plane's case shock waves, otherwise known as sonic booms.

Surfing a wake of light: Researchers observe and control light wakes for the first time

Cambridge, MA | Posted on July 6th, 2015

Wakes can exist wherever there are waves, even if those waves are light. While nothing travels faster than the speed of light in a vacuum, light isn't always in a vacuum. It is possible for something to move faster than the phase velocity of light in a medium or material and generate a wake. The most famous example of this is Cherenkov radiation, wakes produced as electrical charges travel through liquids faster than the phase velocity of light, emitting a glowing blue wake.

For the first time, Harvard researchers have created similar wakes of light-like waves moving on a metallic surface, called surface plasmons, and demonstrated that they can be controlled and steered. The discovery, published today in the journal Nature Nanotechnology, was made in the lab of Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering at the Harvard John A. Paulson School of Engineering and Applied Science (SEAS).

"The ability to control light is a powerful one," said Capasso. "Our understanding of optics on the macroscale has led to holograms, Google Glass and LEDs, just to name a few technologies. Nano-optics is a major part of the future of nanotechnology and this research furthers our ability to control and harness the power of light on the nanoscale."

The creation and control of surface plasmon wakes could lead to new types of plasmonic couplers and lenses that could create two-dimensional holograms or focus light at the nanoscale.

Surface plasmons are confined to the surface of a metal. In order to create wakes through them, Capasso's team designed a faster-than-light running wave of charge along a one-dimensional metamaterial -- like a powerboat speeding across a lake.

The metamaterial, a nanostructure of rotated slits etched into a gold film, changes the phase of the surface plasmons generated at each slit relative to each other, increasing the velocity of the running wave. The nanostructure also acts like the boat's rudder, allowing the wakes to be steered by controlling the speed of the running wave.

The team discovered that the angle of incidence of the light shining onto the metamaterial provides an additional measure of control and using polarized light can even reverse the direction of the wake relative to the running wave -- like a wake traveling in the opposite direction of a boat.

"Being able to control and manipulate light at scales much smaller than the wavelength of the light is very difficult," said Daniel Wintz, a lead author of the paper and graduate student in the Capasso lab. "It's important that we not only observed these wakes but found multiple ways to control and steer them."

The observation itself was challenging, as "surface plasmons are not visible to the eye or cameras," said co-lead author Antonio Ambrosio of SEAS and the Italian Research Council (CNR). "In order to view the wakes, we used an experimental technique that forces plasmons from the surface, collects them via fiber optics and records the image."

This work could represent a new testbed for wake physics across a variety of disciplines. "This research addresses a particularly elegant and innovative problem in physics which connects different physical phenomena, from water wakes to sonic booms, and Cherenkov radiation," said Patrice Genevet, a lead author, formerly of SEAS, currently affiliated with the Singapore Institute of Manufacturing Technology.

###

This paper was co-authored by Alan She, of SEAS and Romain Blanchard, of SEAS and Eos Photonics.

This research was supported by the National Science Foundation and the Air Force Office of Scientific Research.

####

For more information, please click here

Contacts:
Leah Burrows

617-496-1351

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project