Home > Press > New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors
Abstract:
There was a time during the early development of portable electronics when the biggest hurdle to overcome was making the device small enough to be considered portable. After the invention of the microprocessor in the early 1970s, miniature, portable electronics have become commonplace and ever since the next challenge has been finding an equally small and reliable power source. Chemical batteries store a lot of energy but require a long period of time for that energy to charge and discharge plus have a limited lifespan. Capacitors charge quickly but cannot store enough charge to work for long enough to be practical. One possible solution is something called a solid-state micro-supercapacitor (MSC). Supercapacitors are armed with the power of a battery and can also sustain that power for a prolonged period time. Researchers have attempted to create MSCs in the past using various hybrids of metals and polymers but none were suitable for practical use. In more recent trials using graphene and carbon nanotubes to make MSCs, the results were similarly lackluster.
An international team of researchers led by Young Hee Lee, including scientists from the Center for Integrated Nanostructure Physics at the Institute for Basic Science (IBS) and Department of Energy Science at Sungkyunkwan University in South Korea, has devised a new technique for creating an MSC that doesn’t have the shortcomings of previous attempts but instead delivers high electrochemical performance.
When designing something new and complex, sometimes the best inspiration is one already found in nature. The team modeled their MSC film structure on natural vein-textured leaves in order to take advantage of the natural transport pathways which enable efficient ion diffusion parallel to the graphene planes found within them.
To create this final, efficient shape, the team layered a graphene-hybrid film with copper hydroxide nanowires. After many alternating layers they achieved the desired thickness, and added an acid solution to dissolve the nanowires so that a thin film with nano-impressions was all that remained.
To fabricate the MSCs the film was applied to a plastic layer with thin, ~5μm long parallel gold strips placed on top. Everything not covered by the gold strips was chemically etched away so that only the gold strips on top of a layer of film were left. Gold contact pads perpendicular to the gold strips were added and a conductive gel filled in the remaining spaces and was allowed to solidify. Once peeled from the plastic layer, the finished MSCs resemble clear tape with gold electrical leads on opposite sides.
The team produced stunning test results. In addition to its superior energy density, the film is highly flexible and actually increases capacitance after initial use. The volumetric energy density was 10 times higher than currently available commercial supercapacitors and also far superior to any other recent research. The MSCs are displaying electrical properties about five orders of magnitude higher than similar lithium batteries and are comparable to existing, larger supercapacitors. According to Lee, “To our knowledge, the volumetric energy density and the maximum volumetric power density in our work are the highest values among all carbon-based solid-state MSCs reported to date.”
In the future, consumers will likely power their devices with MSCs instead of batteries. Applications for light, reliable energy storage combined with a long lifespan and fast charge/discharge time. The team’s MSCs could be embedded into an electronic circuit chip as power sources for practical applications such as implantable medical devices, active radio frequency identification tags, and micro robots. If engineers utilize the material’s incredible flexibility, these MSCs could be utilized in portable, stretchable, and even wearable electronic devices.
####
About Institute for Basic ScienceInstitute for Basic Science
IBS was founded in 2011 by the government of the Republic of Korea with the sole purpose of driving forward the development of basic science in Korea It comprises a total of 50 research centers in all fields of basic science, including mathematics, physics, chemistry, life science, earth science and interdisciplinary science. IBS has launched 24 research centers as of January 2015.There are eight physics, one mathematics, six chemistry, seven life science, and two interdisciplinary research centers.
For more information, please click here
Contacts:
Mr. Shi Bo Shim
Head of Department of Communications
Institute for Basic Science
+82-42-878-8189
Ms. Sunny Kim
Department of Communications
Institute for Basic Science+82-42-878-8135
Copyright © AlphaGalileo Ltd
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Flexible Electronics
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
CityU awarded invention: Soft, ultrathin photonic material cools down wearable electronic devices June 30th, 2023
Liquid metal sticks to surfaces without a binding agent June 9th, 2023
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Thin films
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
RFID
Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017
Conformal transfer of graphene for reproducible device fabrication August 11th, 2015
Designer electronics out of the printer: Optimized printing process enables custom organic electronics June 16th, 2015
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||