Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Helium 'balloons' offer new path to control complex materials

Inserting helium atoms (visualized as a red balloon) into a crystalline film (gold) allowed Oak Ridge National Laboratory researchers to control the material's elongation in a single direction.
CREDIT: ORNL
Inserting helium atoms (visualized as a red balloon) into a crystalline film (gold) allowed Oak Ridge National Laboratory researchers to control the material's elongation in a single direction.

CREDIT: ORNL

Abstract:
Researchers at the Department of Energy's Oak Ridge National Laboratory have developed a new method to manipulate a wide range of materials and their behavior using only a handful of helium ions.

Helium 'balloons' offer new path to control complex materials

Oak Ridge, TN | Posted on June 27th, 2015

The team's technique, published in Physical Review Letters, advances the understanding and use of complex oxide materials that boast unusual properties such as superconductivity and colossal magnetoresistance but are notoriously difficult to control.

For the first time, ORNL researchers have discovered a simple way to control the elongation of a crystalline material along a single direction without changing the length along the other directions or damaging the crystalline structure. This is accomplished by adding a few helium ions into a complex oxide material and provides a never before possible level of control over magnetic and electronic properties.

"By putting a little helium into the material, we're able to control strain along a single axis," said ORNL's Zac Ward, who led the team's study. "This type of control wasn't possible before, and it allows you to tune material properties with a finesse that we haven't previously had access to."

The intricate way in which electrons are bound inside complex oxides means that any strain -- stretching, pulling or pushing of the structure -- triggers changes in many different electronic properties. This ripple effect complicates scientists' ability to study or make use of the finicky materials.

The researchers demonstrated the technique on a common oxide material known as LSMO but they anticipate the technique will be widely applicable to both functionality driven materials science research and fundamental physics studies.

"Complex oxides are where we expect an immediate impact, but this technique should be an important new tool to use on any material where crystal symmetry affects functionality," Ward said.

The team's work is a step toward bringing complex materials into commercial applications, which would greatly benefit from the ability to tune material properties with processing similar to current semiconductor technologies.

"Our strain doping technique demonstrates a path to achieving this need, as it can be implemented using established ion implantation infrastructure in the semiconductor industry," Ward said.

The method uses a low-energy ion gun to add small numbers of helium ions into the material after it has been produced. The process is also reversible; the helium can be removed by heating the material to high temperatures in vacuum. Previously developed strain tuning methods modify all directions in a material and cannot be altered or reversed afterwards.

"We can easily control the amount of strain and how deep that strain is inside the material," Ward said. "By controlling the number of helium atoms inserted into an epitaxial film, we select a strain state in one direction while the other two directions are held in place by the substrate."

The team's experimental technique will also benefit theoretical research that seeks to model complex materials to predict and understand their behavior.

"The complexity of these materials requires a huge equation to explain their behaviors," Ward said. "Normal strain tuning methods require you to change many variables in that equation which means that you don't really know which one is giving you a specific reaction. In our case, there's one variable. You can feed in a single term and try to break through that complexity a little bit by simplifying it. This is a great method to experimentally probe theoretical models."

###

The paper is published as "Strain doping: Reversible single axis control of a complex oxide lattice via helium implantation." Coauthors are ORNL's Hangwen Guo, Shuai Dong, Philip Rack, John Budai, Christianne Beekman, Zheng Gai, Wolter Siemons, C.M. Gonzalez, R. Timilsina, Anthony Wong, Andreas Herklotz, Paul Snijders, Elbio Dagotto and Thomas Ward.

The study was supported by the Department of Energy's Office of Science and used resources at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility at ORNL.

####

About Oak Ridge National Laboratory
UT-Battelle manages ORNL for the Department of Energy's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov/.

For more information, please click here

Contacts:
Morgan McCorkle

865-574-7308

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Superconductivity

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project