Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists highlight the importance of nanoscale hybrid materials for non-invasive cancer diagnosis

Abstract:
Various diagnostic imaging techniques are currently used for clinical imaging/disease diagnosis. The accuracy of diagnosis is mainly based on the type of energy used (such as X-ray, sound waves, photons and positrons) to derive the visual information, as well as the degree of spatial resolution (mesoscopic or microscopic) and the level of information that can be obtained (physiological, anatomical or molecular). Based on potential health hazards imposed by type of energy used, clinical imaging modalities can be broadly categorized as ionizing and non-ionizing modalities. Compared to ionizing imaging techniques (for example X-ray imaging), non-ionizing imaging techniques make use of harmless low-energy input radiations (such as visible light and near infra-red light) that are safer to image the targeted subjects. Furthermore, such non-ionizing techniques allow repeated imaging procedures with increased dosage levels for image clarification and verification. Extensive research is going on worldwide to enhance image resolution and therefore to further popularize non-ionizing imaging techniques in clinical imaging and diagnosis.

Scientists highlight the importance of nanoscale hybrid materials for non-invasive cancer diagnosis

Beijing, China | Posted on June 24th, 2015

Owing to recent spectacular advances in nanochemistry and nanomaterials sciences, substantial progress in the design and synthesis of synthetic nanoscale hybrid materials has been achieved with new or improved properties. This allows scientists to fabricate new hybrid materials that can be used in individual and multimodal imaging techniques simultaneously. A review published in Science Bulletin by Prof. Yanli Zhao coauthored with Dr. Sivaramapanicker Sreejith, Tran Thi Mai Huong, and Dr. Parijat Borah showcased various strategies for the design of organic-inorganic nanohybrids toward fluorescent, Raman, photoacoustic and combined multimodality imaging. The team stated that "design of multifunctional nanohybrids offers great opportunities to integrate additional functionalities, thus opening up new imaging and therapeutic avenues".

Optical imaging modalities such as fluorescence, photoacoustic and Raman bioimaging were mainly highlighted in this review by giving emphasis on the use of various hybrid materials as single and multimodal image contrast materials. Fluorescence imaging is widely adopted as the mainstay of microscopy in service of biology due to its high selectivity of targets. An ideal fluorescence imaging probe will be the one with robust photostability, excellent fluorescence and no toxicity in biological systems. However, the existing organic dyes, fluorescent proteins and quantum dots are either unstable or toxic to biological systems. Hence, the development of novel organic-inorganic nanohybrids is required, which combine strong fluorescence, high photostability and great biocompatibility in one single entity. In the review, authors stated that hybrid materials prepared from silica are promising examples for fluorescence imaging. Similarly, photosensitizer loaded mesoporous silica nanoparticles (MSNPs) and dye loaded MSNPs wrapped with an ultrathin layer of graphene oxide (GO) also show excellent performance for fluorescence imaging.

It was stated in the review that a potential approach to obtain precise high resolution images may be by the use of multimodal imaging techniques for example a combination of fluorescence and Raman imaging. Raman imaging technique relied on Raman scattering or inelastic scattering of light has been used to characterize various sp2 carbon-containing nanomaterials such as carbon nanotubes and graphene. It has attracted a lot of interest as an excellent noninvasive bioimaging tool because of its many desirable properties such as minimal photobleaching and high resolution. However, Raman scattering is very weak and demands advanced techniques such as surface-enhanced Raman scattering (SERS) to magnify the signal intensity. It was highlighted that a combination of GO with gold nanoparticles (AuNPs) could show bimodal fluorescence and Raman imaging.

Similarly, they also reviewed recently emerging techniques such as photoacoustic imaging (PAI) that has been widely used to provide high spatial resolution images. The advantages of this technique are offset by the fact that tissues often experience low optical absorption due to tissue scattering and negative influence of some endogenous agents like hemoglobin. Nanoparticle-based contrast agents were then developed to enhance the photoacoustic signals for tissue imaging. The team reported a method to prepare a GO-based nanosandwich hybrid. The GO was encapsulated by mesoporous silica on its both sides, followed by loading of a two-photon active dye and then sealed with poly(acrylic acid) to obtain the nanosandwich hybrid. The hybrid has low cytotoxicity and high ability to afford excellent photoacoustic and fluorescent bimodal imaging in cancer cells and tissue mimics.

The recent fabrication of novel hybrid nanomaterials has been proven useful for applications in fluorescent, Raman, photoacoustic and combined bioimaging. Although there are still some challenges to be addressed, including the long-term toxicity of nanohybrids and the difficulty for translating the developed nanohybrids to clinical bioimaging uses, state-of-the-art advancements of organic-inorganic hybrids have already shown their significant application potentials for clinical bioimaging especially in screening cancerous cells.

####

For more information, please click here

Contacts:
Yanli Zhao

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Cancer

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project