Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > New Sensors Measure Blood Anti-Coagulation Drug

June 17th, 2015

New Sensors Measure Blood Anti-Coagulation Drug

Abstract:
Iranian researchers from Isfahan University of Technology produced a highly sensitive and accurate sensor which can measure a type of blood anti-coagulation drug.

Story:
The sensor was produced through a simple and cost-effective method and its application does not require advanced skills.

Protamine is an important drug that is used as an anti-heparin agent to prevent blood coagulation during cardiovascular surgeries. Excess consumption of protamine causes undesirable effects, including sudden reduction in blood pressure, shortness of breath and feeling hot. Therefore, researchers have recently paid special attention to quick and exact methods to measure protamine.

In this research, a simple but very sensitive sensor based on fluorescence spectroscopy was presented by using cadmium – telluride quantum dots to quickly measure protamine drug. Taking into account the fact that this sensor presents a simple and quick method for the measurement of protamine, it is able to prevent excess consumption of the drug without wasting time. Therefore, the required medical actions can be taken before it gets too late.

In addition to its high speed, this sensor minimizes environmental pollution due to the use of very low concentration of quantum dots in the production of the sensor and the lack of the need for toxic and organic solvents.

Researchers believe that the results of the research can be commercialized due to the advantages of the sensor, including quick and fast measurement, low production cost and the availability of the devices required for tracing signal (fluorescence spectroscopy device).

Results of the research have been published in Biosensors and Bioelectronics, vol. 71, issue 1, 2015, pp. 243-248.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project