Home > Press > Researchers create transparent, stretchable conductors using nano-accordion structure
![]() |
Abstract:
Researchers from North Carolina State University have created stretchable, transparent conductors that work because of the structures' "nano-accordion" design. The conductors could be used in a wide variety of applications, such as flexible electronics, stretchable displays or wearable sensors.
Chih-Hao Chang
"There are no conductive, transparent and stretchable materials in nature, so we had to create one," says Abhijeet Bagal, a Ph.D. student in mechanical and aerospace engineering at NC State and lead author of a paper describing the work.
"Our technique uses geometry to stretch brittle materials, which is inspired by springs that we see in everyday life," Bagal says. "The only thing different is that we made it much smaller."
The researchers begin by creating a three-dimensional polymer template on a silicon substrate. The template is shaped like a series of identical, evenly spaced rectangles. The template is coated with a layer of aluminum-doped zinc oxide, which is the conducting material, and an elastic polymer is applied to the zinc oxide. The researchers then flip the whole thing over and remove the silicon and the template.
What's left behind is a series of symmetrical, zinc oxide ridges on an elastic substrate. Because both zinc oxide and the polymer are clear, the structure is transparent. And it is stretchable because the ridges of zinc oxide allow the structure to expand and contract, like the bellows of an accordion.
"We can also control the thickness of the zinc oxide layer, and have done extensive testing with layers ranging from 30 to 70 nanometers thick," says Erinn Dandley, a Ph.D. student in chemical and biomolecular engineering at NC State and co-author of the paper. "This is important because the thickness of the zinc oxide affects the structure's optical, electrical and mechanical properties."
The 3-D templates used in the process are precisely engineered, using nanolithography, because the dimensions of each ridge directly affect the structure's stretchability. The taller each ridge is, the more stretchable the structure. This is because the structure stretches by having the two sides of a ridge bend away from each other at the base - like a person doing a split.
The structure can be stretched repeatedly without breaking. And while there is some loss of conductivity the first time the nano-accordion is stretched, additional stretching does not affect conductivity.
"The most interesting thing for us is that this approach combines engineering with a touch of surface chemistry to precisely control the nano-accordion's geometry, composition and, ultimately, its overall material properties," says Chih-Hao Chang, an assistant professor of mechanical and aerospace engineering at NC State and corresponding author of the paper. "We're now working on ways to improve the conductivity of the nano-accordion structures. And at some point we want to find a way to scale up the process."
The researchers are also experimenting with the technique using other conductive materials to determine their usefulness in creating non-transparent, elastic conductors.
####
For more information, please click here
Contacts:
Matt Shipman
919-515-6386
Copyright © North Carolina State University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Flexible Electronics
Display technology/LEDs/SS Lighting/OLEDs
Chemistry
Quantum interference in molecule-surface collisions February 28th, 2025
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Textiles/Clothing
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022
Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |