Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A protective shield for sensitive catalysts: Hydrogels block harmful oxygen

With a novel hydrogel, sensitive catalysts can be protected from oxygen molecules (red) which could irreversibly damage the catalysts. The hydrogel converts oxygen into water (red-white).

© Felipe Conzuelo
With a novel hydrogel, sensitive catalysts can be protected from oxygen molecules (red) which could irreversibly damage the catalysts. The hydrogel converts oxygen into water (red-white).

© Felipe Conzuelo

Abstract:
An international research team has found a way of protecting sensitive catalysts from oxygen-caused damage. In the future, this could facilitate the creation of hydrogen fuel cells with molecular catalysts or with biomolecules such as the hydrogenase enzyme. To date, this could only be accomplished using the rare and expensive precious metal platinum. Together with their French colleagues, researchers from Bochum and Mülheim describe the way in which a hydrogel can serve as a "protective shield" for biomolecules by two articles written in the journals Angewandte Chemie and the Journal of the American Chemical Society.

A protective shield for sensitive catalysts: Hydrogels block harmful oxygen

Bochum, Germany | Posted on June 15th, 2015

Requirements on catalysts are difficult to reconcile

In order to be suitable for industrial applications, catalysts have to be efficient, stable and affordable; in addition, they have to be tailor-cut for one specific chemical reaction. "Uniting all of these requirements in one molecule is a considerable challenge," says Dr Nicolas Plumeré from the Chemistry Department at the Ruhr-Universität Bochum. However, a novel hydrogel in which catalysts are embedded could greatly simplify the development of fuel cell catalysts in the future. To explore this possibility, the researchers from Bochum began a collaborative project with colleagues from the Max Planck Institute for Chemical Energy Conversion in Mülheim and from Aix Marseille University and the Centre National de la Recherche Scientifique (CNRS) in France.

Hydrogel acting as solvent and as protective environment

For their experiments, the German team utilised the hydrogenase enzyme from the green alga Chlamydomonas rheinhardtii; it splits hydrogen into protons and electrons. Typically, even trace amounts of oxygen cause irreversible damage to this biomolecule. However, the researchers incorporated it in a hydrogel which assumes two functions: it acts as a solvent, ensuring that all reaction partners reach the enzyme quickly and easily. At the same time, it provides a protective environment in which the oxygen cannot penetrate through to the enzyme, even if it is present at relatively high concentrations. The trick: the hydrogenase activity leads to the creation of electrons; they wander through the hydrogel and are transmitted to the oxygen, thus converting it into a harmless form, namely water.

Catalyst design could become considerably easier in the future

Using simulations and experiments, the German-French team demonstrated another important property of hydrogels. The activity of many catalysts decreases over time due to exposure to deactivating molecules. Some can be rendered functional again through special reactivation processes. Notably, however, the hydrogel protects even those catalysts for which a reactivation process does not exist. "In future, we will thus no longer have to pay attention to the robustness or suitable reactivation processes when developing catalysts for technical applications," explains Olaf Rüdiger, Chemist at the Max Planck Institute for Chemical Energy Conversion. "We can focus solely on maximising the catalyst's activity. This will simplify the development process to a considerable degree and open up new possibilities for the manufacture of fuel cells."

###

Funding

The German Research Foundation funded the project as part of the RESOLV Cluster of Excellence (EXC 1069). The French subproject has been carried out thanks to the support of the A*MIDEX project "MicrobioE" (n° ANR-11-IDEX-0001-02) funded by the "Investissements d'Avenir" French Government programme.

Bibliographic record

A. Alsheikh Oughli, F. Conzuelo, M. Winkler, T. Happe, W. Lubitz, W. Schuhmann, O. Rüdiger, N. Plumeré (2015): Protection from oxidative damage of the O2 sensitive [FeFe]-hydrogenase from Chlamydomonas reinhardtii using a redox hydrogel, Angewandte Chemie International Edition, DOI: 10.1002/anie.201502776R1

V. Fourmond, S. Stapf, H. Li, D. Buesen, J. Birrell, R. Olaf; W. Lubitz, W. Schuhmann, N. Plumeré, C. Léger (2015): The mechanism of protection of catalysts supported in redox hydrogel films, Journal of the American Chemical Society, DOI: 10.1021/jacs.5b01194

####

For more information, please click here

Contacts:
Dr Nicolas Plumeré
junior research team
Molecular Nanostructures at the Centre for Electrochemical Sciences (CES)
Faculty of Chemistry and Biochemistry
Ruhr-Universität
44780 Bochum, Germany
phone: +49/234/32-29434


Dr Olaf Rüdiger
head of research group
Protein-Electrochemistry
Max Planck Institute for Chemical Energy Conversion
Mülheim an der Ruhr, Germany
phone: +49/208/306 3526

Copyright © Ruhr University Bochum

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Hydrogels

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Shrinking hydrogels enlarge nanofabrication options: Researchers from Pittsburgh and Hong Kong print intricate, 2D and 3D patterns December 29th, 2022

The deformation of the hydrogel is used to measure the negative pressure of water April 22nd, 2022

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Automotive/Transportation

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Fuel Cells

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project