Home > Press > Argonne scientists announce first room-temperature magnetic skyrmion bubbles: New ideas are bubbling up for more efficient computer memory
Abstract:
Researchers at UCLA and the U.S. Department of Energy's Argonne National Laboratory announced today a new method for creating magnetic skyrmion bubbles at room temperature. The bubbles, a physics phenomenon thought to be an option for more energy-efficient and compact electronics, can be created with simple equipment and common materials.
Skyrmions, discovered just a few years ago, are tiny islands of magnetism that form in certain materials. If you wrapped one up into a sphere, its magnetic fields would point away in all different directions -- so they stay in neat little packages and don't unravel easily.
Scientists found they could prod these skyrmions to move using electric currents, and an idea was born: could we use them to represent 1s and 0s in computer memory?
Transistors, which form the basis of today's computing, are tiny devices that stop the flow of electric current (off and on, 1 and 0). But there's a limit to how small we can make them, and we're running up against it. Scientists want to find a way to create 1 and 0 by using physics phenomena that don't actually change the atomic structure of the material -- for example, making a line of skyrmions that could be read as 1s (skyrmion) and 0s (no skyrmion).
But the only way we knew how to make new individual skyrmion bubbles on demand was at very, very low temperatures (below 450 degrees Fahrenheit) with expensive equipment like spin-polarized scanning tunneling microscopes -- not practical for making consumer devices like laptops, and not even easy for most scientists to make so they could study them.
'Our new method is the simplest way to generate skyrmion bubbles thus far,' said Argonne postdoctoral researcher Wanjun Jiang, the first author on the study.
The team used a geometric structure to 'blow' the bubbles into shape in a very thin film. Using the Center for Nanoscale Materials, a DOE Office of Science user facility at Argonne, they built a constricted wire out of a three-layered structure in which a tiny layer of magnetic material is sandwiched between tantalum and tantalum-oxide layers.
Long stripes of magnetic domains appear in the magnetic material on one side of a tiny channel. When the scientists applied an electric current to the metal layers, the stripes stretched through the channel and broke into tiny spherical skyrmion bubbles on the other side -- much like how children blow soap bubbles.
By running a smaller electric current through the system, they could make the skyrmions move.
'These aren't exotic materials -- they're widely used already in the magnetics industry,' said Argonne materials scientist Axel Hoffmann, the corresponding author on the paper. The electric current needed to move the skyrmions is much lower than what's used in other experimental memory alternatives, like racetrack memory, he said.
'With this system we can explore many of the theoretical ideas on skyrmion physics that have been proposed over the past few years,' said Argonne physicist Suzanne G.E. te Velthuis, who co-authored the study.
'We think this method could apply to many more materials,' Jiang said. 'This opens many new opportunities for the future.'
###
The study, 'Blowing magnetic skyrmion bubbles,' was published on June 12 in Science Express. The research was supported by the U.S. Department of Energy's Office of Science, Basic Energy Sciences, Materials Science and Engineering, and by the National Science Foundation. The Center for Nanoscale Materials is a DOE Office of Science user facility.
####
About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.
DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.
For more information, please click here
Contacts:
Louise Lerner
630-252-5526
Copyright © Argonne National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Hardware
The present and future of computing get a boost from new research July 21st, 2023
A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020
Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Memory Technology
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||